On The Benefits of Floating Electrical Measurement

Y. Lobsiger*, G. Ortiz*, D. Bortis*, J. W. Kolar*

* ETH Zurich, Switzerland
Power Electronic Systems Laboratory
lobsiger@lem.ee.ethz.ch

† Enertronics GmbH, Switzerland
c/o ETH Zurich, Power Electronic Systems Lab.
info@enertronics.ch
Concept and Experimental Evaluation of a Novel DC – 100 MHz Wireless Oscilloscope

Y. Lobsiger*†, G. Ortiz*†, D. Bortis*†, J. W. Kolar*

* ETH Zurich, Switzerland
Power Electronic Systems Laboratory
lobsiger@lem.ee.ethz.ch

† Enertronics GmbH, Switzerland
c/o ETH Zurich, Power Electronic Systems Lab.
info@enertronics.ch
Outline

► Typical Testing of Power Electronics
► State of the Art Isolated Measurement Principles
► New Concept: Wireless Oscilloscope
► Experimental Verification
► Summary
Typical Situation at Testing of Power Electronic Systems

► Measurements during bringing into service of converters

MV grid e.g. 10kV

Converter Cell

AC/DC

AC/DC

AC/DC

AC/DC

DC/DC

DC/DC

DC/AC

Converter Cell

50Hz + Ripple

High dV/dT

Floating potential

Several kHz

► Floating Potential(s)!
 – Up to tens of Kilovolts
 – Up to tens of Kilovolts/Microsecond

► Voltages / Currents
 – Millivolts to Kilovolts
 – Ampères to Kiloampères
 – DC to Tens of Megahertz
Outline

- Typical Testing of Power Electronics
- State of the Art Isolated Measurement Principles
- New Concept: Wireless Oscilloscope
- Experimental Verification and Comparison
- Summary
State of the Art Isolated Voltage Measurement

► Basic Types
 – Differential Probes

 – Optically Isolated Systems
 (analog link / digital link)

► Drawback: Probe Combines Isolation and Measurement
 – Differential probe: strong attenuation of input voltage
 – Optical systems: high bandwidth / data rate real time signal transmission
State of the Art Isolated Voltage Measurement

- Trade-Off: Voltage Isolation vs. Measurement Bandwidth of Commercially Available Measurement Systems
State of the Art Isolated Current Measurement

► **Basic Types**
- Current Transformers
- Current Compensated Transformers (clamp-on current probes)
- Rogowski Coils

► **Drawback: Combination of Isolation and Measurement**
- Parasitics scale with geometrical dimensions
- Large size – high isolation – low bandwidth
State of the Art Isolated Current Measurement

► Trade-Off: Voltage Isolation vs. Measurement Bandwidth of Commercially Available Measurement Systems
State of the Art Isolated Voltage / Current Measurement

Goal: New Measurement Concept!?!

- Reaching **no intrinsic isolation voltage**
- Reaching at least **100 MHz bandwidth**
Outline

► Typical Testing of Power Electronics
► State of the Art Isolated Measurement Principles
► New Concept: Wireless Oscilloscope
► Experimental Verification and Comparison
► Summary
Wireless Oscilloscope – Basic Idea

► Provide the Isolation at a Different Position in the Measurement Chain
 – Separate data acquisition (channels) and user interface!
 – No need for isolated probes / sensors
 – No need for an additional oscilloscope

► System Overview

Wireless Oscilloscope

- Signal processing
- A/D-conversion
- Data storage
- Battery powered

Graphical User Interface

- Waveform display
- Configuration by user
- Data export
- Math. functions
Wireless Oscilloscope – Overview

► Isolated Channel(s) and GUI

► Specifications of Prototype

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Bandwidth</td>
<td>DC–100 MHz</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>400 MS/s</td>
</tr>
<tr>
<td>Memory Depth.</td>
<td>200’000 S</td>
</tr>
<tr>
<td>Resolution</td>
<td>8 Bit</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>± 80 mV ... ± 20 V ≥ 800 mV ... ± 200 V (1:10 passive probe) ...</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>Input Capacitance, Differential</td>
<td>15 pF</td>
</tr>
<tr>
<td>Input Capacitance, Common Mode</td>
<td>26 pF</td>
</tr>
<tr>
<td>Battery</td>
<td>Li-Ion, Rechargeable</td>
</tr>
<tr>
<td>Battery Runtime (typ.)</td>
<td>> 8 h</td>
</tr>
<tr>
<td>Communication</td>
<td>Bluetooth, Class 1</td>
</tr>
<tr>
<td>Trigger</td>
<td>Wireless & Optical</td>
</tr>
<tr>
<td>Physical Dimensions</td>
<td>141 mm x 81 mm x 32 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>350 g</td>
</tr>
</tbody>
</table>
Outline

► Typical Testing of Power Electronics
► State of the Art Isolated Measurement Principles
► New Concept: Wireless Oscilloscope
► Experimental Verification and Comparison
► Summary
Analog Bandwidth

► Isolated Channel – Schematic Overview

► Analog Frontend: $f_{-3dB} = 200$ MHz

► Limitation by Sampling Rate
 – 400 MS/s sampling rate
 – Reconstruction of periodic signals with $f_{\text{max}} = 200$ MHz (Nyquist-Shannon)
 – Rule of thumb: $f_{-3dB} \cdot t_{\text{rise}} \approx 0.35$
 Sampling rate limits bandwidth to $f_{-3dB,max} \approx 140$ MHz
Common Mode Rejection @ $f = 200$ kHz

Measurement Setup

- **Wireless Scope**
 - $v_M \rightarrow$ PC

- **Differential Probe**
 - v_{CM}
 - i_{CM}

Measurement: Differential vs. Wireless

Differential Probes (State of the Art)
- Diff. Probe 1 (25 MHz) ≈ 42dB
- Diff. Probe 2 (100 MHz) ≈ 54dB
- Diff. Probe 3 (100 MHz) ≈ 61dB

Wireless Oscilloscope
- Direct Connection ≈ 100 dB
- 1:1 Passive Probe ≈ 100 dB
- 1:10 Passive Probe ≈ 80 dB
Common Mode Rejection @ $f = 200$ kHz

Measurement Setup

Wireless Oscilloscope: Influence of Passive Probe (1:10)

- Passive Probe 1: ≈ 79 dB
- Passive Probe 2: ≈ 80 dB
- Passive Probe 3: ≈ 85 dB
- Passive Probe 4: ≈ 90 dB

Wireless with Different Passive Probes
Isolated Voltage Measurement 1/2

Measurement Setup

- High-Side Gate-Emitter Voltage
 - Small amplitude of ca. ±15 V with respect to the floating load voltage v_L of ca. 0/600 V

Differential Probe 1
- Strong CM error of the measurement during the high dv/dt of the load voltage v_L

Wireless Scope
- No visible CM error of the measurement (Miller plateau is flat as expected)
Isolated Voltage Measurement 2/2

Measurement Setup

- Shorted Probe Leads on Floating Load Voltage
 - Differential input signal \(= 0 \text{ V} \)
 - Floating load voltage \(v_L \) of ca. \(0/600 \text{ V} \)

- Error decays only with a time constant of ca. \(7 \mu\text{s} \)

Differential Probe 1
- Strong CM error during \(\text{d}v/\text{d}t \) transients of ca. \(4 \text{ V} \)
- Error decays only with a time constant of ca. \(7 \mu\text{s} \)

Wireless Scope
- Only very small CM error
- Low noise level
Isolated Current Measurement 1

Measurement Setup

- **Shunt & Wireless Scope**
- **Shunt & Differential Probe**

Load Current on Floating Voltage

- **0.1 Ohm Coaxial Shunt + Diff. Probe 3**
 - Strong CM error
 - High noise level

- **0.1 Ohm Coaxial Shunt + Wireless Scope**
 - Identical to clamp-on current probe, no errors
Isolated Current Measurement 2 – Overview

► MOSFET Drain Current
 – Floating Reference Voltage
 – High Bandwidth Current Transients (turn-on / turn-off)

► Measurement Setup
 – 0.1 Ohm Shunt & Wireless Scope
 – Current Transformer
 – Rogowski Coil

Shunt & Wireless Scope Current Transformer Rogowski Coil
Isolated Current Measurement 2 – Results

► Rogowski Coil
- Delay
- Limited bandwidth
- Ringing due to CM transients
- Limited isolation voltage

► Current Transformer
- High bandwidth
- No apparent CM error
- High-pass characteristic (no DC)
- Limited isolation voltage

► Shunt & Wireless Scope
- High bandwidth
- No apparent CM error
- DC – 100 MHz
- No intrinsic limitation on isolation voltage
Outline

► Typical Testing of Power Electronics
► State of the Art Isolated Measurement Principles
► New Concept: Wireless Oscilloscope
► Experimental Verification and Comparison
► Summary
Wireless Oscilloscope – Isolated Measurement

- High Bandwidth (DC – 100 MHz)
- No Intrinsic Limitation on Isolation Voltage

![Diagram of Wireless Oscilloscope with Enertronics WP-A100 model highlighting no intrinsic isolation limitation at 100 MHz bandwidth.](image)
Summary

- **Wireless Oscilloscope**
 - **Isolation**
 - No intrinsic limitation
 - Use non-isolated probes / sensors
 - **Accuracy**
 - High CMRR
 - Low Noise
 - **Handling**
 - Highly secure
 - No cabling needed
 - **Analog Bandwidth**
 - DC – 100 MHz
 - Variable attenuation
 - Variable offset
Summary

► Wireless Oscilloscope

► Isolation
 – No intrinsic limitation
 – Use non-isolated probes / sensors

► Accuracy
 – High CMRR
 – Low Noise

► Analog Bandwidth
 – DC – 100 MHz
 – Variable attenuation
 – Variable offset

► Handling
 – Highly secure
 – No cabling needed
References

Questions?