From Brute Force Grid Search to Artificial Intelligence: Which Algorithms for Magnetics Optimization?

IEEE APEC 2020: PSMA Industry Session
Design of Magnetics for Different Circuit Topologies

Thomas Guillod and J. W. Kolar
Power Electronic Systems Laboratory
ETH Zurich, Switzerland
Acknowledgement

The authors would like to thank

- P. Papamanolis
- Dr. D. Rothmund
- Dr. R. Burkart
- G. Mauro
- Dr. K. Leong
- Dr. M. Kasper
- Dr. G. Deboy

for their contributions.
Design Automation in Power Electronics

Advanced Passives
Automated Design of Converters & Systems
Interdisciplinarity

WBG

2025

Power MOSFETs & IGBTs
Microelectronics
Circuit topologies
Modulation concepts
Control concepts

Super-junct. techn. & WBG
Digital power
Modeling & simulation

Adv. Packaging

SCRs & diodes
Solid-state devices

ETH Zürich
Multi-Objective Optimization

■ Advantages
 • Efficiency, power density, costs, reliability, etc.
 • Virtual prototyping \rightarrow time to market

■ Requirements
 • Models & data
 • Algorithms & objectives

[Adapted from R. Burkart, PhD Thesis, ETHZ, 2016]
Modelling Magnetics

Accuracy
Complexity
Full Numerical Model

- Based on fundamental equations
 - Maxwell
 - Heat transfer
 - Navier–Stokes

- Methods
 - FEM/FVM
 - FDM/FDTD
 - PEEC/MoM

- Properties
 - Highest accuracy
 - High modelling effort
 - High computational effort

- Useful for final validation
- Too time consuming for optimization

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]
Full Analytical Model

- **Modelling approach**
 - Simplified physics
 - Simple equations
 - Explicit solution

- **Properties**
 - Low accuracy
 - Low modelling effort
 - Low computational effort

MF transformer analytical model

- Useful for initial estimation & understanding
- Too many simplifications for virtual prototyping

[Adapted from T. Guillod, IEEE CPSS, 2019]
Semi-Numerical Model

- **Modelling approach**
 - Complex equations
 - Numerical solution
 - Thermal-loss coupling

- **Properties**
 - High accuracy
 - Medium modelling effort
 - Medium computational effort

[Adapted from R. Burkart, PhD Thesis, ETHZ, 2016]
Data-Driven Model

- **Modelling approach**
 - Limited physical meaning
 - From measured or simulated data

- **Methods**
 - Interpolation / regression
 - Artificial intelligence

- **Properties**
 - Versatile method
 - Limited validity range

[Theoretical background: S. Skansi, Introduction to Deep Learning, 2018]
Artificial Neural Networks

- **Artificial neural networks**
 - Machine learning
 - Input/output mapping

- **Advantages**
 - Versatile method
 - Very fast evaluation

- **Difficulties**
 - Choice of the network & data
 - Extrapolation is difficult

Select the network weights in order to reconstruct the outputs with minimal error

[Theoretical background: S. Skanski, Introduction to Deep Learning, 2018]
Artificial Neural Networks

- MF transformer model
 - Semi-numerical model
 - Thermal-loss coupling

- Artificial neural networks
 - 5’000 designs for training
 - Prediction of 130’000 designs

Frequency
Number of turns
Flux density
Current density

Efficiency
Power density

Theoretical background: S. Skansi, Introduction to Deep Learning, 2018
Optimizing Magnetics

Accuracy
Complexity
Model Properties

- Properties (worst case)
 - Multivariable (input/output)
 - Non-linear
 - Non-convex
 - Non-continuous
 - No (explicit) gradient
 - Constrained (explicit/implicit)
 - Mixed-integer (discrete variables)

- Which optimization method?
- The perfect solution does not exist

- Design space to performance space
 - No clear trends
 - No clear mapping
 - No clear optimum
 - Analytical opt. are not sufficient

- Design space diversity

[Adapted from T. Guillod, IEEE CPSS, 2019]
Design Space Diversity

- **MF transformer semi-numerical model**
 - Fixed power: 20kW
 - Fixed volume: 1dm³
 - Loss range: \([P_{opt}, P_{opt} + 15\%]\)

- **300'000 designs with similar performances**
 - Frequency: [50, 300] kHz
 - Flux density: [25, 120] mT
 - Current density: [1.8, 6.5] A/mm²

Quasi-Optimal Designs

Geometrical Aspect Ratio

- Local optima and/or flat optima
- Robustness of optimization algorithms?
- Opportunities for additional constraints?

[Adapted from T. Guillod, IEEE CPSS, 2019]
Brute Force Grid Search

- **Algorithms properties**
 - Extremely robust
 - No restriction on the model
 - Exponential scaling
 - Relatively slow but parallelizable
 - Can be combined with heuristics

- **A desktop computer makes 25-400 billion floating point operations per second!**
- **A cloud computing server cost 5-10¢ per hour!**

- **DC-DC resonant converter**
 - Semi-numerical model
 - Accurate thermal-loss coupling
 - Vectorized, parallel, and optimized
 - 100’000 designs per second

- **Brute force is (whenever possible) the best solution**

[Theoretical background: S. Rao, Engineering Optimization, 2009]
Gradient, Simplex, Geometric Programming

- **Algorithms properties**
 - Extremely fast convergence
 - Problems with local minima
 - Problems with design space diversity

- **Restrictions on the model**
 - Smooth function (gradient opt.)
 - Posynomial function (geom. prog.)
 - No discrete variables (various alg.)
 - No complex constraints (various alg.)

- **Restricted to problems with compatible models and constraints**
- **Can be combined with other approaches (e.g. brute-force)**

[Theoretical background: S. Rao, Engineering Optimization, 2009]
Genetic Optimization, Particle Swarm, Simulated Annealing

- **Algorithms properties**
 - Stochastic approach
 - Slower convergence
 - Compatible with local minima
 - Compatible with design space diversity
 - Few restrictions on the model

- **Genetic algorithm**
 - Initial population
 - Fitness / selection
 - Crossover / mutation

- **Good trade-off between robustness and speed**

[Theoretical background: S. Rao, Engineering Optimization, 2009]
Artificial Neural Networks

- Deep learning
 - Given specifications
 - Extract Pareto Front
 - Within seconds

- Artificial neural networks
 - Prediction the number of sol.
 - Predicting the losses
 - Adjusting the Pareto front

- Difficulties
 - Choice of the network & data
 - Handling discrete data
 - Scaling to large problems

Neural Network for Inductor Pareto Fronts

Training Data from Genetic Alg.

[Infineon Technologies, Villach, Austria]
Artificial Neural Networks

- Generates inductor Pareto fronts in less than 5 seconds!

- For quick comparison between technologies
- For getting a good initial design guess

Infineon Technologies, Villach, Austria
Case Study
MV Converter
Solid-State Transformer
Design Space Diversity
Case Study: Solid-State Transformer for Datacenter

- **Single-stage SST** for datacenters presented by ETH zürich
 - 3.8kV AC input
 - 400V DC output
 - 25kW
 - 10kV SiC technology

- **DC-DC perf. target**: 99% & 3kW/dm³ & single hardware iteration
- **How to optimize using the design space diversity?**

[Adapted from D. Rothmund, IEEE JESTPE, 2018]
Converter Pareto Front

- **Trade-off: switching frequency**
 - Transformer: reduced volt-second product
 - Semiconductors: switching losses

- **Selected frequency: 48kHz**
 - System optimum: 48kHz
 - Transformer optimum: 100kHz

DC-DC Pareto Front

- Global optimum is composed of sub-optimal components
- Design space diversity?

Transformer Pareto Front

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]
Converter Pareto Front

- **Trade-off: switching frequency**
 - Transformer: reduced volt-second product
 - Semiconductors: switching losses

- **Selected frequency: 48kHz**
 - System optimum: 48kHz
 - Transformer optimum: 100kHz

DC-DC Pareto Front

- Selected: 99.01%

Transformer Pareto Front

- Optimal: 99.75%
- Selected: 99.67%

- How to use the design space diversity?
- Brute force grid search / genetic alg.

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]
Design Space Diversity: Accommodating Practical Constraints

- Transformer optimization
 - Every core geometry
 - Every litz wire stranding

- Available parts
 - Core & winding
 - Which impact?

- Practical constraints
 - Manufacturability
 - Which impact?

Accommodating available core & litz wires: 0.02% impact
Design space diversity mitigates the impact

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]
Design Space Diversity: Adding a Secondary Goal

- Partial load efficiency as an additional trade-off
 - No-load losses (core)
 - Load losses (winding)
 - Negligible impact on the full-load efficiency

- Design space diversity means that additional goals are achievable

DC-DC Converter Loss Distribution

- 99.0% @ 100% load
- 99.0% @ 50% load
- 3.8 kW/dm³

DC-DC Converter Meas. Efficiency

[Adapted from D. Rothmund, IEEE JESTPE, 2018]
Conclusion & Outlook

Model & Optimization
Future Research Areas
Conclusion & Outlook

Models
- Analytical model for basic comparison
- Semi-numerical model for optimization
- Numerical model for verification
- Data-driven model has potential

Design space diversity
- Different designs → same performances
- Enable add. objectives and constraints
- Should be checked → don’t miss opportunities

Optimization
- Brute force is robust and reasonably fast
- Genetic, part. swarm, neural network, etc.
- Care is required: no guarantee for global opt.

Remaining challenges
- Integration in industrial context
- Readily available software, model, data, etc.
Thank You!

Questions? guillod@lem.ee.ethz.ch