Minimum Loss Operation of High Frequency Inductors

Presentation
Grenoble, France, Wednesday 19th of February, 2020
Pantelis Papamanolis, T. Guillod, F. Krismer and J. W. Kolar

Power Electronic Systems Laboratory, ETH Zurich, Switzerland
Motivation / Scientific contribution
System-level approach

Specs:
- DC/DC
- $V_{in} = 400V$
- $V_{out} = 200V$
- $P = 2kW$
- EMI Class B

Topology

System DOF
- Switch. Freq f_{sw}
- Current ripple r
- In capacit. C_{in}
- Out capacit. C_{out}
- Filter Induct L
- etc

Component DOF
- IGBT, MOSFET
- Chip area
- E-core, ETD-core
- Ferrite, Iron
- Round, Litz
- etc

ETH Zürich
Motivation / Scientific contribution
System-level approach

- **Choosing the remaining DOF**
 - System DOF
 - Component DOF

- **Component level difficulties**
 - Design/Performance space diversity
 - Complex interactions between components
 - Large number of design variables

- **Component level difficulties**
 - Design/Performance space diversity
 - Complex interactions between components
 - Large number of design variables

- **Component level difficulties**
 - Design/Performance space diversity
 - Complex interactions between components
 - Large number of design variables

Multi-objective Optimization

[Diagram of DC/DC Buck converter]

- **DC/DC Buck converter**

Graphs showing Design Space and Performance Space with Pareto Frontier

- **Pareto Frontier**
Motivation / Scientific contribution
State-of-the-art characterization of magnetic components

- Performance factor: \(PF = B_{pk}f \)
- Performance factor incl. winding losses: \(PF_w = B_{pk}f^w \)
- Performance factor incl. dc bias: \(PF_{dc} = \sqrt{fB_{ac}B_{dc}} \)

What is missing?
- Effect of **fringing field** on the copper losses (air-gap)
- **Temperature** sensitivities (core & coil)
- **DC-bias** effect on the core losses
- Winding turns’ packing

Optimal operating condition of filter inductor?

\[\text{ETH zürich} \]
Motivation / Scientific contribution
Component-level approach

- DC/DC Buck converter

Specifications:
- \(V_{\text{in}} = 400 \text{ V} \)
- \(V_{\text{out}} = 200 \text{ V} \)
- \(d = 50 \% \)
- \(P = 2 \text{ kW} \)

- Power Inductor losses investigation
- Concept can be extended to more complex topologies

\[\text{\textcopyright ETH zürich} \]
Motivation / Scientific contribution

Component-level approach

- **Design space** (System DOF)
 - Switching frequency (f)
 - Current ripple (r)

- **Elimination of further influences by considering:**
 - Constant magnetic core: E55/28/21 – Ferrite N87
 - Constant type of coil: Litz wire – 100μm
 - Sinusoidal HF excitation + DC bias
 - Constant power, i.e., constant power density
Motivation / Scientific contribution
Component-level approach

- Different models employed
 - Simplified analytic model
 - Employment of an Electromagnetic – Thermal (EMT) coupled model

- Investigation of the following matters:
 - Optimal switching frequency
 - Reasonable range of operation
 - Important influencing parameters

In other words:
Provided a core, what are the best operating conditions of the component?
Brief Outline

- Scaling laws / simplified evaluation
- Electromagnetic-thermal coupled model (EMT)
- Analysis of identified losses
- Experimental verification
- Identified bottleneck & extension to advanced HF materials
- Practical design guidelines
Investigation based on analytic models

- **Core losses**
 (General Steinmetz Equation)
 \[P_{\text{core}} = \text{Vol} \times k \times f_{\text{sine}} \times B_{\text{ac}}^\beta \]

- **Coil losses**
 (dc + skin/proximity effect ac losses)
 \[P_{\text{coil}} = R_{\text{dc}} \times i_{\text{dc}}^2 + R_{\text{dc}}(F_R i_{\text{ac,pk}}^2 + N_{\text{str}}^2 G_R H_{s,rms,pk}^2) \]

- **Simplified H-field calculation**
- **Constant Steinmetz parameters**
- **Temperature dependency disregarded**

\[f_{\text{sine}} = 50 \text{ kHz} \]

\[f_{\text{sine}} = 500 \text{ kHz} \]

\[P_{\text{tot}} - P_{\text{coil}} - P_{\text{core}} \]

Optimum ripple (i.e., \(L_{\text{opt}} \)) @\(N_{\text{opt}} \approx N_{\text{sat}} \)
Investigation based on analytic models

- With increasing $f \uparrow \rightarrow i_{\text{opt}} \downarrow$
- With increasing $f \uparrow \rightarrow P_{\text{tot}} \downarrow$
- From analytical calculations:
 \[L_{\text{opt}} \propto f_{\text{sine}}^{\frac{\alpha-\beta}{2+\beta}} \]

 With increasing $f \uparrow \rightarrow \alpha \uparrow$
ElectroMagnetic – Thermal (EMT) Model

- Implemented in MATLAB

Core losses calculation:
 - General Steinmetz Equation – GSE
 - Premeasured/Tabulated Steinmetz coefficients considering the effects of B_{ac}, B_{dc}, f, T

Winding losses calculation:
 - Ferreira – Bessel functions
 - H-field estimation using the mirroring method

Reluctance model
 - Accurate airgap and flux DC-bias definition
 - 3D airgap reluctance calculation

Detailed thermal model

- EMT coupling iteratively until temperature convergence
Analysis of identified losses

Analytic approach

- **Specifications**
 - \(V_{\text{in}} = 400 \text{ V} \)
 - \(V_{\text{out}} = 200 \text{ V} \)
 - \(d = 50 \% \)
 - \(P = 2 \text{ kW} \)

- **Semi-numeric approach using EMT model**
 - Considered ripple and frequency ranges:
 - Switching frequency \((f)\): \(50\text{kHz} \ldots 1\text{MHz}\)
 - Current ripple pk-pk \((r)\): \(2\% \ldots 200\%\)

\[r = \frac{I_{\text{AC},\text{pk-pk}}}{I_{\text{dc}}} \]

\(r \) Current ripple definition

- For each \(r - f \) pair \(L \) is defined from:
 \[
 L(f, r) = \frac{1}{fr} \frac{(1 - D)DU_{\text{in}}}{I_{\text{dc}}}
 \]

- Remaining DOF the **number of turns** \((N)\)
- Local optimization wrt \(N \)

\(U_{\text{in}} = 400 \text{ V} \)
\(V_{\text{out}} = 200 \text{ V} \)
\(d = 50 \% \)
\(P = 2 \text{ kW} \)
Analysis of identified losses

Analytic approach

- **Specifications**
 - $V_{in} = 400$ V
 - $V_{out} = 200$ V
 - $d = 50\%$
 - $P = 2$ kW

- **Semi-numeric approach using EMT model**
 - Considered ripple and frequency ranges:
 - Switching frequency (f): 50 kHz ... 1 MHz
 - Current ripple pk-pk (r): 2% ... 200%

 \[r = \frac{I_{AC,pk-pk}}{I_{dc}} \]

 ▲ Current ripple definition

- **Current ripple definition**
 - $r : 85\%$
 - $f : 80$ kHz

 ▲ Current ripple definition

- $r : 8\%$
 - $f : 500$ kHz
Analysis of identified losses
Local optimization of individual operating points (E55/28/21, N87 – $d_{\text{strand}} = 100\mu m$)

$r : 85 \, \%$, $f : 80 \, \text{kHz}$
$L = 147\mu H$

$r : 8 \, \%$, $f : 500 \, \text{kHz}$
$L = 250\mu H$
Analysis of identified losses
Local optimization of individual operating points (E55/28/21, N87 – $d_{\text{strand}} = 100\mu\text{m}$)

$r : 85 \% , f : 80 \text{ kHz}$
$L = 147\mu\text{H}$

$r : 8 \% , f : 500 \text{ kHz}$
$L = 250\mu\text{H}$
Analysis of identified losses

Local optimization of individual operating points (E55/28/21, N87 – $d_{\text{strand}} = 100\mu$m)

\[r : 85\% , \; f : 80\; \text{kHz} \]

\[L = 147\mu\text{H} \]

\[r : 8\% , \; f : 500\; \text{kHz} \]

\[L = 250\mu\text{H} \]

\[P_{\text{tot}} (N) \approx P_{\text{coil}, 25} \left(\frac{N}{25} \right)^2 + P_{\text{core}, 25} \left(\frac{N}{25} \right)^{-\beta} , \text{ where } P_{\text{coil}, 25} \approx P_{\text{core}, 25} \approx \frac{P_{\text{tot}, 25}}{2} \]
Analysis of identified losses
Complete f-r domain investigation (E55/28/21, N87 – d_{strand} = 100\mu m)

- **Regions identified:**
 1. Optimal design region
 2. Thermally valid – suboptimal designs
 3. Exceedingly high HF losses
 4. Exceedingly high LF losses

- **$P_2 \approx 30\% P_1$**

- **Trajectories of interest:**
 1. r_a: optimal r, f pairs
 \[r_a(f) \approx \frac{1}{f \left(\frac{50\text{kHz}}{f}\right)} \]

 Constant Inductance

 2. r_b: constant frequency, ripple sensitivity
Analysis of identified losses
Optimal trajectory r_a

- **Constant L**
- **Flat behavior for** $f \in [300, 750]$ kHz
- **Basic scaling laws**
 \[P_{\text{core}} \propto f^{\alpha - \beta} \]
 \[P_{\text{coil, HF}} \propto R_{dc} G_R H_{P_k, HF}^2 \left[f^{-2} \right] \propto 1 \]
 With $f \uparrow \Rightarrow \begin{cases} N \downarrow, & \text{if } \alpha < \beta \\ N \uparrow, & \text{if } \alpha \geq \beta \end{cases}$ such that:
 \[P_{\text{core}} \approx P_{\text{coil}} \]
- **Global opt** @ $f = 500$ kHz, where $\alpha \approx \beta$
- **Summary regarding opt. designs:**
 - Balanced copper/core losses
 - B_{pk} close to B_{sat}
Analysis of identified losses

\(f = 500 \text{ kHz trajectory } r_b \)

- **3 distinct Regions**
 - **Region 1 \((r < 8\%) \)**
 - High \(L \rightarrow \) High \(N \rightarrow \) High \(J \)
 - \(B_{p,k} \) limited by \(B_{\text{sat}} \)
 - High DC copper losses
 - **Region 3 \((20\% \geq r) \)**
 - Increasing AC losses
 - **Region 2 \((8\% \leq r < 20\%) \)**
 - Flat behavior!
 - Further details → P. Papamanolis, APEC 2018
Experimental verification
Measurement setup

Operating principle
► Step 1: DUT disabled
 @ steady state (i.e. \(T_{\text{in,amb}} = T_{\text{set}} \)). \[P_{\text{heater}} = P_0 \]
► Step 2: DUT enabled. Controller adapts
 \[P_{\text{heater}} = P_1 \] to preserve constant \(T_{\text{in}} \).
► \(P_{\text{DUT}} = P_0 - P_1 \)

Properties of measurement method
+ No calibration required
+ High accuracy at low loss measurements
+ Measurement at desired “ambient” temperature
- Large time constants because of the DUT
- Increased complexity

Calorimetric meas. setup [Kleeb 2013]

Simplified schematic

Measurement example
Experimental verification

DUT considered

- Single inductor design
 - Core: E55/28/21
 - Litz wire – 900x100µm
 - L = 167 µH
 - N = 16 (2 layers x 8 turns)
 - Total air-gap: 800µm (400µm per leg)
 - Resonance freq @ 2.5 MHz

- Compromise between optimal designs for f_c[200kHz, 750kHz]
Experimental verification

Measurements

- **Same trend**
- **Underestimation** observed, up to 0.5 Watts (error below 25%), reasons:
 - Core-loss data interpolation for $f > 270$ kHz
 - Conductor close to air-gap → intense fringing field losses

According to prev. **scaling laws** for $N = \text{const.}$

- $P_{\text{core}} \propto f^{\alpha - \beta}$
- $P_{\text{coil,HF}} \propto R_{dc}G_{R_{p}k_{HF}}H_{2}^{2} \propto f^{-2}$

Minimum @ $\alpha \approx \beta$

- Δ Model evaluation VS Measurement
Extension to further materials

Measurements

- Main limitation is where $\alpha = \beta$ (This corresponds to the peak of the PF)

 $$GSE: \ p = k \ f^\alpha B^\beta \Rightarrow B = \left(\frac{p}{k}\right)^\beta f^{-\frac{\alpha}{\beta}}, \quad PF = Bf = \left(\frac{p}{k}\right)^\beta f^{\frac{\beta-\alpha}{\beta}} = \text{const.} \ f^{\frac{\beta-\alpha}{\beta}}$$

- Using existing performance factor data, together with the proposed guideline, allows for estimation of the optimal operating points (r_{opt}, f_{opt}).

 - Data from TDK-EPCOS
 - $T = 100 \, ^\circ C$
 - $P_L = 300 \, \text{kW/m}^3$

- Need of materials with better PF \rightarrow Typically achieved at higher frequencies \rightarrow
 At these frequencies GaN semiconductors achieve great performance

- Existing electrical methods limited, due to parasitics, intensive calibration and post-process requirements and need for expensive equipment
Acquirement of new data using newly proposed transient calorimetric method from PES ETH-Zurich (presented at APEC 20’ – New Orleans)

Accurate measurement within some tens of seconds

Knowledge of the cores thermal capacitance required, since:

\[P_{\text{core}} = C_{\text{th,core}} \frac{dT_{\text{meas}}}{dt} \]

Proposed methods:
- Differential Scanning Calorimetry (DSC)
- DC current injection through core block
Extension to further materials

Measurements

► Concept verification through coupled Magnetic and Heat transfer FEM simulations

► Further verification using high accuracy IR thermal imaging

▲ Flux density
▲ Loss density
▲ Temperature distribution
▲ Stored energy distribution

▲ $T_{\text{core}} = 30^\circ\text{C}$
▲ $T_{\text{core}} = 34^\circ\text{C}$
▲ $T_{\text{core}} = 36^\circ\text{C}$
Extension to further materials

Measurements

► Application on MnZn ferrite TDK-EPCOS N87/N49 – Comparison to electrical measurements

► Application on NiZn ferrite Fair-Rite 67 [5 – 50 MHz]
Conclusions
Conclusion (1) / Practical Guidelines

- Provided **magnetic core** → f_{opt} exists @ $\alpha \approx \beta$
 $f > f_{\text{opt}}$ → Increases losses

- Provided f_{opt}, choose N_{opt} and r_{opt} such that:
 - Balanced copper/core losses
 - B_{pk} close to B_{sat}

- **Minimum losses** correspond to approx. constant L_{opt}

 $$L_{\text{opt}} = \frac{1}{f_{\text{opt}} r_{\text{opt}}} \frac{(1 - D)D U_{\text{in}}}{I_{dc}}$$

- For any frequency the **optimal current ripple** equals:

 $$r_{\text{subopt}}(f) = \frac{1}{f L_{\text{opt}}} \frac{(1 - D)D U_{\text{in}}}{I_{dc}}$$
Conclusion (2) / Observations and Future steps

Useful Observations

- 3 different flat-optima regions of interest (N87 E55/28/21 – 100μm):
 - Provided f & r with respect to N. e.g. \(N \in [19, 31] \) @ \(f = 80 \text{ kHz}, r = 85\% \)
 - Provided \(L \) with respect to \(f \). e.g. \(f \in [300 \text{ kHz}, 750 \text{ kHz}] \) @ \(L = 167 \mu\text{H} \)
 - Provided \(f \) with respect to \(r \). e.g. \(r \in [8\%, 20\%] \) @ \(f = 500 \text{ kHz} \)

Experimental Verification

- **Total losses** measurement using **steady-state calorimeter**
- Measurement of **core-losses** and **PF** evaluation using **transient calorimetric measurement**
 (Further details at APEC 2020 – New Orleans)

Useful Observations

- Total losses measurement using steady-state calorimeter
- Measurement of core-losses and PF evaluation using transient calorimetric measurement
 (Further details at APEC 2020 – New Orleans)
Discussion...
Analysis of identified losses

Further application

Different litz wire strand diameter
- 200μm: \(d_{\text{strand}} \uparrow \rightarrow F_R, G_R \uparrow \rightarrow P_{\text{Cu,ac}} \uparrow\)
- 71μm: \(d_{\text{strand}} \downarrow \rightarrow F_R, G_R \downarrow \rightarrow P_{\text{Cu,ac}} \downarrow\)
- \(P_{\text{Cu,dc}} \rightarrow \text{const. due to similar fill factor (}k\text{)}\)

Different core: E42/21/20
- Area of valid designs narrower
- Operation @\(f_{\text{low}}\) thermally invalid
Experimental verification

Measurement setup

- Calorimeter consists of 2 boxes
 - Inner enclosure (temp. sensors, heater, DUT)
 - Outer enclosure (reference chamber)
- Heater control unit (preserve temperature)
- DUT excitation circuit
- Operating principle
 - Step 1: DUT disabled
 @ steady state (i.e. $T_{in,amb} = T_{set}$). [$P_{heater} = P_0$]
 - Step 2: DUT enabled. Controller adapts
 [$P_{heater} = P_1$] to preserve constant T_{in}.
 - $P_{DUT} = P_0 - P_1$

Properties of measurement method
 + No calibration required
 + Measurement at desired “ambient” temperature
 + High accuracy at low loss measurements
 - Large time constants because of the DUT
 - Increased complexity