Novel Three-Phase 2/3-Modulated Buck-Boost Current Source Inverter System Employing Dual-Gate Monolithic Bidirectional GaN e-FETs

M. Guacci, M. Tatic, Dr. D. Bortis, Prof. Dr. J.W. Kolar
ETH Zurich, Zurich, Switzerland
Power Electronic Systems Laboratory

Y. Kinoshita, Dr. H. Ishida
Panasonic Corporation, Osaka, Japan
Energy Solution Development Center
Industrial Solution Company
ETH, Zurich, Switzerland - 7th February 1854

Facts & Figures

<table>
<thead>
<tr>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>509</td>
<td>Professors</td>
</tr>
<tr>
<td>5800</td>
<td>Staff Members</td>
</tr>
<tr>
<td>4500</td>
<td>Ph.D. Students</td>
</tr>
<tr>
<td>14500</td>
<td>M.Sc. & B.Sc. Students</td>
</tr>
<tr>
<td>2</td>
<td>Campuses</td>
</tr>
<tr>
<td>16</td>
<td>Departments - D-ITET</td>
</tr>
<tr>
<td>136</td>
<td>Laboratories - PES</td>
</tr>
</tbody>
</table>

Main Campus, Zurich City Center
Organizational Diagram

Industry Relations
R. Coccia / B. Seiler

Johann W. Kolar

Adv. Mechatronic Systems
D. Bortis

AC-DC Converter
M. Heller
D. Menzi
D. Neumayr
J. Schäfer

AC-AC Converter
J. Azurza
P. Czyz

DC-DC Converter
F. Krismer
P. Bezerra
T. Guillod
G. Knabben

DC-AC Converter
D. Bortis
M. Antivachis
J. Böhler
M. Guacci
M. Haider

Multi-Domain Modeling
F. Krismer
P. Papamanolis

Measurement Technology
P. Niklaus

Advanced Mechatronics
D. Bortis
E. Hubmann

Magnetic Levitation
D. Bortis

Secretariat
M. Kohn / Y. Schnyder

Administration
P. Maurantonio

Computer Systems
M. Eisenstat

Electronics Laboratory
P. Seitz

M. Antivachis
J. Böhler
M. Guacci
M. Haider
Introduction
Introduction

Electric Mobility

Airbus, Siemens, Rolls-Royce: E-FaN X
www.airbus.com

Tesla Motors: Model 3
www.tesla.com

- Hybrid Electric Vehicle (HEV) 50 kW
- Battery Electric Vehicle (BEV) 200 kW
- Air Taxi 400 kW
- More Electric Aircraft (MEA) 2 MW
- More Electric Engine (MEE) 20 MW

On-Board DC/AC Conversion

Energy Storage

Electric Machine

Power Electronics

Power Electronics Requirements

Efficiency > 98 - 99%
Power Density > 5 - 15 kW/kg
Outline

► Introduction
► Voltage vs. Current DC-Link Inverter
► Monolithic Bidirectional Switch
► 3-φ Buck-Boost CSI System
► Hardware & Measurements
► Outlook
Voltage vs. Current
DC-Link Inverter

Continuous Output Voltage
Wide Input Voltage Range
Bidirectional Power Devices
- **Voltage vs. Current DC-Link Inverter**

 3-ϕ Voltage DC-Link Inverter

 ![Diagram of 3-ϕ Voltage DC-Link Inverter]

 Advantages

 - Simple Circuit Topology
 - No Magnetic Components
 - Only Six Power Semiconductors
Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

![Diagram of 3-φ Voltage DC-Link Inverter](image)

Advantages

Simple Circuit Topology
No Magnetic Components
Only Six Power Semiconductors

Challenges

Switched Output Voltage
Wave Propagation & Reflection
Partial Discharge (PDIV)
Bearing Currents
Electro-Magnetic (EMI) Emissions
Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

![Diagram of 3-φ Voltage DC-Link Inverter]

Challenges

- **Switched Output Voltage**
- Wave Propagation & Reflection
- Partial Discharge (PDIV)
- Bearing Currents
- Electro-Magnetic (EMI) Emissions
 - External Output Filter
 - Reinforced Insulation
 - Ceramic Bearings
 - Shielded Cables

Advantages

- Simple Circuit Topology
- No Magnetic Components
- Only Six Power Semiconductors
Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

- **Challenges**
 - Switched Output Voltage
 - Wave Propagation & Reflection
 - Partial Discharge (PDIV)
 - Bearing Currents
 - Electro-Magnetic (EMI) Emissions
 → External Output Filter
 - Limited Input Voltage Range
 - Traction Battery Charge
 - Fuel-Cell Operating Point

Advantages

- Simple Circuit Topology
- No Magnetic Components
- Only Six Power Semiconductors
Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

![Circuit Diagram](image)

Challenges

- **Switched Output Voltage**
- Wave Propagation & Reflection
- Partial Discharge (PDIV)
- Bearing Currents
- Electro-Magnetic (EMI) Emissions

→ **External Output Filter**

Limited Input Voltage Range

- Traction Battery Charge
- Fuel-Cell Operating Point

→ **Input Boost Stage**

Advantages

- Simple Circuit Topology
- No Magnetic Components
- Only Six Power Semiconductors

DC-Link: V vs. I
2G MB GaN e-FET
3-φ bB CSI System
HW & Measurements
Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

- Simple Circuit Topology
- Continuous Output Voltage
- Wide Input Voltage Range
Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

3-φ Current DC-Link Inverter

Features

- Simple Circuit Topology
- Continuous Output Voltage
- Wide Input Voltage Range
Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

![Circuit Diagram for 3-φ Voltage DC-Link Inverter](image)

Features
- Simple Circuit Topology
- Continuous Output Voltage
- Wide Input Voltage Range

3-φ Current DC-Link Inverter

![Circuit Diagram for 3-φ Current DC-Link Inverter](image)

Disadvantages
- Inductive DC-Link
- Bidirectional Power Semiconductors
Monolithic Bidirectional Switch

Specifications
Dual-Gate Structure
Gate Injection Driver
Monolithic Bidirectional Switch

Conventional GaN e-FET (1x)

- 650V - 25mΩ
- Monolithic Bidirectional Switch

Conventional GaN e-FET (2x)

\[\pm 650V - 50m\Omega \]
Monolithic Bidirectional Switch

Conventional GaN e-FET (4x)

- DC-Link: V vs. I
- 2G MB GaN e-FET
- 3-φ bB CSI System
- HW & Measurements

► ±650V - 25mΩ
Monolithic Bidirectional Switch

Conventional GaN e-FET (4x)

- GS66516B
- 78AEd (4)

DC-Link: V vs. I

- 2G MB GaN e-FET

New Panasonic GaN e-FET (1x)

- Monolithic Bidirectional Switch (MBS)
- Common Drain - Single Drift Layer
- Dual-Gate (2G)

- GS66516B
- 78AEd (4)

DC-Link: V vs. I

- 3-φ bB CSI System

- HW & Measurements

- ±650V - 25mΩ

- ±600V - 26mΩ
Monolithic Bidirectional Switch

Equivalent Circuit

ON OFF

Bidirectional Voltage Blocking
Bidirectional Current Flow

New Panasonic GaN e-FET
Monolithic Bidirectional Switch (MBS)
Common Drain - Single Drift Layer
Dual-Gate (2G)
Monolithic Bidirectional Switch

Equivalent Circuit

- ON
- OFF

- Bidirectional Voltage Blocking
- Bidirectional Current Flow

Gate Injection Panasonic 2G Driver

Gate Driver Features

- Separate On-Off Paths
- Constant Current Path
- Minimum Component Number

DC-Link: V vs. I
2G MB GaN e-FET
3-φ bB CSI System
HW & Measurements
3-φ Buck-Boost Current Source Inverter System

Operating Principle
Conventional PWM
Two-Third Modulation (TTM)
Operating Principle

3-φ Buck-Boost Current Source Inverter (CSI) System
Operating Principle

3-φ Buck-Boost CSI System

Equivalent Circuit

Three-State Switches (2x)
Operating Principle

Active States

- \([ab]\)
- \([ac]\)
- \([ba]\)
- \([bc]\)
- \([ca]\)
- \([cb]\)

Zero States

- \([aa]\)
- \([bb]\)
- \([cc]\)

Equivalent Circuit

- **Space Vector (SV) Diagram**

Three-State Switches (2x)
Operating Principle

Active States

- **[ab]** \(\vec{i}_{ph} = [+i_{dc}, -i_{dc}, 0] \)
- **[ac]** \(\vec{i}_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[ba]** \(\vec{i}_{ph} = [-i_{dc}, +i_{dc}, 0] \)
- **[bc]** \(\vec{i}_{ph} = [0, -i_{dc}, +i_{dc}] \)
- **[ca]** \(\vec{i}_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[cb]** \(\vec{i}_{ph} = [0, +i_{dc}, -i_{dc}] \)

Zero States

- **[aa]** \(\vec{i}_{ph} = [0, 0, 0] \)
- **[bb]** \(\vec{i}_{ph} = [0, 0, 0] \)
- **[cc]** \(\vec{i}_{ph} = [0, 0, 0] \)

Equivalent Circuit

- **Input Voltage**
 - **[aa]**
 - **Short-Circuit**
Operating Principle

Active States

- **[ab]** \(\dot{i}_{ph} = [+i_{dc}, -i_{dc}, 0] \)
- **[ac]** \(\dot{i}_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[ba]** \(\dot{i}_{ph} = [-i_{dc}, +i_{dc}, 0] \)
- **[bc]** \(\dot{i}_{ph} = [0, -i_{dc}, +i_{dc}] \)
- **[ca]** \(\dot{i}_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[cb]** \(\dot{i}_{ph} = [0, +i_{dc}, -i_{dc}] \)

Zero States

- **[aa]** \(\dot{i}_{ph} = [0, 0, 0] \)
- **[bb]** \(\dot{i}_{ph} = [0, 0, 0] \)
- **[cc]** \(\dot{i}_{ph} = [0, 0, 0] \)

Equivalent Circuit

- **Input Voltage**
 - Rectified Line-to-Line Voltage

- **Rectified Line-to-Line Voltage**

DC-Link: V vs. I
2G MB GaN e-FET
3-Φ bB CSI System
HW & Measurements
Conventional Pulse-Width Modulation (PWM)

Active States

\[
\begin{align*}
\text{[ab]} & \quad i_{ph} = [+i_{dc}, -i_{dc}, 0] \\
\text{[ac]} & \quad i_{ph} = [+i_{dc}, 0, -i_{dc}] \\
\text{[ba]} & \quad i_{ph} = [-i_{dc}, +i_{dc}, 0] \\
\text{[bc]} & \quad i_{ph} = [0, -i_{dc}, +i_{dc}] \\
\text{[ca]} & \quad i_{ph} = [+i_{dc}, 0, -i_{dc}] \\
\text{[cb]} & \quad i_{ph} = [0, +i_{dc}, -i_{dc}]
\end{align*}
\]

Zero States

\[
\begin{align*}
\text{[aa]} & \quad i_{ph} = [0, 0, 0] \\
\text{[bb]} & \quad i_{ph} = [0, 0, 0] \\
\text{[cc]} & \quad i_{ph} = [0, 0, 0]
\end{align*}
\]
Conventional Pulse-Width Modulation (PWM)

Active States

- **[ab]** \(i_{ph} = [+i_d, -i_d, 0]\)
- **[ac]** \(i_{ph} = [+i_d, 0, -i_d]\)
- **[ba]** \(i_{ph} = [-i_d, +i_d, 0]\)
- **[bc]** \(i_{ph} = [0, -i_d, +i_d]\)
- **[ca]** \(i_{ph} = [+i_d, 0, -i_d]\)
- **[cb]** \(i_{ph} = [0, +i_d, -i_d]\)

Zero States

- **[aa]** \(i_{ph} = [0, 0, 0]\)
- **[bb]** \(i_{ph} = [0, 0, 0]\)
- **[cc]** \(i_{ph} = [0, 0, 0]\)

3-φ Load Current Waveforms

![Load Current Waveforms Diagram](image)
Conventional Pulse-Width Modulation (PWM)

Active States

\[
\begin{align*}
\text{[ab]} & : i_{ph} = [+i_{dc}, -i_{dc}, 0] \\
\text{[ac]} & : i_{ph} = [+i_{dc}, 0, -i_{dc}] \\
\text{[ba]} & : i_{ph} = [-i_{dc}, +i_{dc}, 0] \\
\text{[bc]} & : i_{ph} = [0, -i_{dc}, +i_{dc}] \\
\text{[ca]} & : i_{ph} = [+i_{dc}, 0, -i_{dc}] \\
\text{[cb]} & : i_{ph} = [0, +i_{dc}, -i_{dc}]
\end{align*}
\]

Zero States

\[
\begin{align*}
\text{[aa]} & : i_{ph} = [0, 0, 0] \\
\text{[bb]} & : i_{ph} = [0, 0, 0] \\
\text{[cc]} & : i_{ph} = [0, 0, 0]
\end{align*}
\]
Conventional Pulse-Width Modulation (PWM)

Active States

- **[ab]** \(i_{ph} = [+i_{dc}, -i_{dc}, 0] \)
- **[ac]** \(i_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[ba]** \(i_{ph} = [-i_{dc}, +i_{dc}, 0] \)
- **[bc]** \(i_{ph} = [0, -i_{dc}, +i_{dc}] \)
- **[ca]** \(i_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[cb]** \(i_{ph} = [0, +i_{dc}, -i_{dc}] \)

Zero States

- **[aa]** \(i_{ph} = [0, 0, 0] \)
- **[bb]** \(i_{ph} = [0, 0, 0] \)
- **[cc]** \(i_{ph} = [0, 0, 0] \)

3-Φ Load Current Waveforms

![Load Current Waveform Graph]
Conventional Pulse-Width Modulation (PWM)

Active States

- **[ab]** \(i_{ph} = [+i_{dc}, -i_{dc}, 0] \)
- **[ac]** \(i_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[ba]** \(i_{ph} = [-i_{dc}, +i_{dc}, 0] \)
- **[bc]** \(i_{ph} = [0, -i_{dc}, +i_{dc}] \)
- **[ca]** \(i_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[cb]** \(i_{ph} = [0, +i_{dc}, -i_{dc}] \)

Zero States

- **[aa]** \(i_{ph} = [0, 0, 0] \)
- **[bb]** \(i_{ph} = [0, 0, 0] \)
- **[cc]** \(i_{ph} = [0, 0, 0] \)

- **Two Active States + One Zero State**
Two-Third Modulation (TTM)

Active States

- \([ab]\) \(i_{\text{ph}} = [+i_{\text{dc}}, -i_{\text{dc}}, 0]\)
- \([ac]\) \(i_{\text{ph}} = [+i_{\text{dc}}, 0, -i_{\text{dc}}]\)
- \([ba]\) \(i_{\text{ph}} = [-i_{\text{dc}}, +i_{\text{dc}}, 0]\)
- \([bc]\) \(i_{\text{ph}} = [0, -i_{\text{dc}}, +i_{\text{dc}}]\)
- \([ca]\) \(i_{\text{ph}} = [+i_{\text{dc}}, 0, -i_{\text{dc}}]\)
- \([cb]\) \(i_{\text{ph}} = [0, +i_{\text{dc}}, -i_{\text{dc}}]\)

Zero States

- \([aa]\) \(i_{\text{ph}} = [0, 0, 0]\)
- \([bb]\) \(i_{\text{ph}} = [0, 0, 0]\)
- \([cc]\) \(i_{\text{ph}} = [0, 0, 0]\)
Two-Third Modulation (TTM)

Active States

- **[ab]** \(i_{ph} = [+i_{dc}, -i_{dc}, 0] \)
- **[ac]** \(i_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[ba]** \(i_{ph} = [-i_{dc}, +i_{dc}, 0] \)
- **[bc]** \(i_{ph} = [0, -i_{dc}, +i_{dc}] \)
- **[ca]** \(i_{ph} = [+i_{dc}, 0, -i_{dc}] \)
- **[cb]** \(i_{ph} = [0, +i_{dc}, -i_{dc}] \)

Zero States

- **[aa]** \(i_{ph} = [0, 0, 0] \)
- **[bb]** \(i_{ph} = [0, 0, 0] \)
- **[cc]** \(i_{ph} = [0, 0, 0] \)

▶ **Two Active States**
Conventional PWM vs. TTM

Conventional PWM

TTM
• Conventional PWM vs. TTM

Equivalent Circuit

[Diagram showing an equivalent circuit with labels for different components and variables.]
Conventional PWM vs. TTM

Equivalent Circuit

- 2G MB GaN e-FETs
Conventional PWM vs. TTM

Equivalent Circuit

- **Diagram:**
 - DC Link: \(i_{dc} \)
 - Line-to-Line Voltages: \(v_a, v_b, v_c \)
 - Currents: \(i_a, i_b, i_c \)
 - Capacitor: \(C_o \)
 - Inductor: \(L_o \)
 - Resistor: \(R_o \)

3-φ Line-to-Line Voltage Waveforms

- **Graph:**
 - Voltages: \(v_{ab}, v_{bc}, v_{ca} \)
 - Time: \(t \)

2G MB GaN e-FETs

- **Note:**
 - 2G MB GaN e-FETs used in the system.
Conventional PWM vs. TTM

Equivalent Circuit

3-φ Line-to-Line Voltage Waveforms

► State Sequence

2G MB GaN e-FETs
Conventional PWM vs. TTM

Equivalent Circuit

3-ϕ Line-to-Line Voltage Waveforms

► State Sequence

▶ 2G MB GaN e-FETs
- **Conventional PWM vs. TTM**

Equivalent Circuit

- **Switching Losses**

- **State Sequence**

- **2G MB GaN e-FETs**

DC-Link: V vs. I

2G MB GaN e-FET

3-ϕ bB CSI System

HW & Measurements
Conventional PWM vs. TTM

Equivalent Circuit

Switching Losses

- Conventional PWM vs. TTM

- Equivalent Circuit

- 2G MB GaN e-FETs

- Switching Losses

- State Sequence
Synergetic Control

Control Structure

![Control Structure Diagram]

- i_a^*
- v_a^*
- $i_{C_o,a}^*$
- $i_{a,sw}^*$
- i_{dc}^*
- v_{Ldc}^*
- v_{qn}^*
- v_{dc}
- v_{pa}
- v_{pb}
- v_{pc}
- $\delta_{[xy]}$
- $s_{T_{dc},h}$
• **Synergetic Control**

Control Structure

3-ϕ Load Waveforms

► **Simulated Waveforms**
Hardware & Measurements

Hardware Design
Multi-Step Commutation Strategy
Measured Waveforms
Hardware Design

3-ϕ Buck-Boost CSI System

![3-ϕ Buck-Boost CSI System Diagram]

DC/AC Operating Point

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Current</td>
<td>(i_{dc})</td>
</tr>
<tr>
<td>Output Power</td>
<td>(P_{out})</td>
</tr>
</tbody>
</table>

DC-Link: \(V \) vs. \(I \)
2G MB GaN e-FET
3-ϕ bB CSI System
HW & Measurements
Hardware Design

3-ϕ Buck-Boost CSI System

![Circuit Diagram]

DC/AC Operating Point
- Input Current: i_{dc}
- Output Power: P_{out}
- Values:
 - i_{dc}: 20A
 - P_{out}: 7.5kW

1-ϕ Half-Bridge

DC/DC Operating Point
- Output Current: i_{dc}
- Value: 20A

- Additional information:
 - DC-Link: V vs. I
 - 2G MB GaN e-FET
 - 3-ϕ bB CSI System

HW & Measurements
Hardware Design

3-φ Buck-Boost CSI System

DC/AC Operating Point
- **Input Current**: i_{dc} 20A
- **Output Power**: P_{out} 7.5kW
- **Output Voltage**: $V_{out, pk}$ 250V
 - $V_{out, ll, pk}$ 433V

DC/DC Operating Point

1-φ Half-Bridge

DC/AC Operating Point
- **Output Current**: i_{dc} 20A
- **Input Voltage**: V_{ba} 400V

DC/DC Operating Point

DC-Link: V vs. I

2G MB GaN e-FET

3-φ bB CSI System

HW & Measurements 49
Hardware Design

3-φ Buck-Boost CSI System → One-Side Module

Top-View

Bottom-View
Hardware Design

3-\(\phi\) Buck-Boost CSI System → One-Side Module

© Top-View

© Bottom-View
Hardware Design

3-φ Buck-Boost CSI System → One-Side Module

- Top-View
- Bottom-View

DC-Link: V vs. I
2G MB GaN e-FET
3-φ bB CSI System
Hardware Design

3-φ Buck-Boost CSI System → One-Side Module

- Top-View
- Bottom-View
Hardware Design

3-φ Buck-Boost CSI System → One-Side Module

![Top-View](image1)

![Bottom-View](image2)
Hardware Design

3-φ Buck-Boost CSI System → One-Side Module

► Top-View

► 3.5” Floppy Disk
Measurements

1-ϕ Half-Bridge

DC/DC Operating Point

- Input Voltage: $V_{ba} = 400V$
- Output Current: $i_{dc} = 5A$

Measured Waveforms

Graph showing measured waveforms with time on the x-axis and voltage and current on the y-axis.
Measurements

1-φ Half-Bridge

DC/DC Operating Point

- Input Voltage \(V_{ba} \) \(\quad 400V \)
- Output Current \(i_{dc} \) \(\quad 5A \)

Measured Waveforms

- DC-Link: \(V \) vs. \(I \)
- 2G MB GaN e-FET
- 3-φ bB CSI System

Graphs:

- \(v_{na} \) vs. \(t \) for \(u_{na} \) and \(i_{dc} \)
- Waveforms for various stages: \(T_{b,ln} \), \(T_{b,lp} \), \(T_{a,ln} \), \(T_{a,lp} \)
Measurements

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage \(V_{\text{ba}} \) 400V
Output Current \(i_{\text{dc}} \) 5A

Measured Waveforms
Measurements

1-φ Half-Bridge

DC/DC Operating Point

- **Input Voltage** $V_{ba} = 400V$
- **Output Current** $i_{dc} = 5A$

Measured Waveforms

- DC-Link: V vs. I
- 2G MB GaN e-FET
- 3-φ bB CSI System

Graphs

- v_{na} vs. i_{dc}
- Measured waveforms for $T_{b,ln}$, $T_{b,lp}$, $T_{a,lp}$, $T_{a,ln}$

Diagram

- Circuit diagram of 1-φ Half-Bridge

* ETH Zürich Power Electronic Systems Laboratory*
Measurements

1-ϕ Half-Bridge

![Half-Bridge Circuit Diagram]

DC/DC Operating Point

- **Input Voltage** \(V_{ba} \): 400V
- **Output Current** \(i_{dc} \): 5A

Measured Waveforms

- **DC-Link: V vs. I**
- **2G MB GaN e-FET**
- **3-ϕ bB CSI System**
- **HW & Measurements**
Measurements

1-φ Half-Bridge

DC/DC Operating Point

- **Input Voltage** \(V_{ba} \) 400V
- **Output Current** \(i_{dc} \) 5A

Measured Waveforms

- DC-Link: \(V \) vs. \(I \)
- 2G MB GaN e-FET
- 3-φ bB CSI System
Measurements

1-φ Half-Bridge

![Diagram of 1-φ Half-Bridge](image)

DC/DC Operating Point

- **Input Voltage** $V_{ba} = 400V$
- **Output Current** $i_{dc} = 5A$

Measured Waveforms

![Measured Waveforms](image)
Outlook

Conclusion
Future Work
Conclusion

Inverter:
Continuous Output Voltage
Wide Input Voltage Range

► 3-φ Buck-Boost CSI System
Outlook

Conclusion

Inverter:
- Continuous Output Voltage
- Wide Input Voltage Range

Panasonic 2G MB GaN e-FET:
- Dual-Gate - Gate Injection
- Monolithic Bidirectional
- Switching Performance

▶ **Multi-Step Commutation Strategy**
Conclusion

Inverter:
- Continuous Output Voltage
- Wide Input Voltage Range

Panasonic 2G MB GaN e-FET:
- Dual-Gate - Gate Injection
- Monolithic Bidirectional
- Switching Performance

Two-Third Modulation (TTM):
- Operating Principle
- Synergetic Control
- -8% Conduction Losses
- -86% Switching Losses
\section*{Outlook}

\subsection*{Conclusion}

\textbf{Inverter:}
- Continuous Output Voltage
- Wide Input Voltage Range

\textbf{Panasonic 2G MB GaN e-FET:}
- Dual-Gate - Gate Injection
- Monolithic Bidirectional
- Switching Performance

\textbf{Two-Third Modulation (TTM):}
- Operating Principle
- Synergetic Control
- \(-8\%\) Conduction Losses
- \(-86\%\) Switching Losses

\subsection*{Future Research}

\textbf{3-Φ Buck-Boost CSI System: Optimization}
Outlook

Conclusion

Inverter:
- Continuous Output Voltage
- Wide Input Voltage Range

Panasonic 2G MB GaN e-FET:
- Dual-Gate - Gate Injection
- Monolithic Bidirectional
- Switching Performance

Two-Third Modulation (TTM):
- Operating Principle
- Synergetic Control
- 8% Conduction Losses
- 86% Switching Losses

Future Research

3-φ Buck-Boost CSI System:
- Optimization
- Complete Design
Outlook

Conclusion

Inverter:
- Continuous Output Voltage
- Wide Input Voltage Range

Panasonic 2G MB GaN e-FET:
- Dual-Gate - Gate Injection
- Monolithic Bidirectional
- Switching Performance

Two-Third Modulation (TTM):
- Operating Principle
- Synergetic Control
- -8% Conduction Losses
- -86% Switching Losses

Future Research

3-φ Buck-Boost CSI System:
- Optimization
- Complete Design

Investigate Different Concepts

► Normally-On
Thank You!
Tack så mycket!
Back-Up Slides
Monolithic Bidirectional Switch

Advantages

- Cost
- Parasitic Output Capacitance C_{oss}
- On-State Resistance $R_{ss,on}$
- Figure of Merit (FoM)
- Thermal Performance
- Package Size - PCB Area
- Switching Performance

Datasheet Parameters

<table>
<thead>
<tr>
<th>Power Semiconductor</th>
<th>$V_{ss,MAX}$</th>
<th>$I_{ss,MAX}$</th>
<th>$R_{ss,on}$</th>
<th>$C_{oss,Q}$</th>
<th>$C_{rss,Q}$</th>
<th>$FoM = (R_{ss,on}Q_{oss})^{-1}$</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panasonic Co. EDLS06SMD</td>
<td>±600 V</td>
<td>92 A</td>
<td>26 – 43 mΩ</td>
<td>190 pF</td>
<td>40 pF</td>
<td>506 MHz/v</td>
<td>2.3 cm²</td>
</tr>
<tr>
<td>GaN Systems Inc. GS66516</td>
<td>(1x) 650 V</td>
<td>(4x) 120 A</td>
<td>25 – 65 mΩ</td>
<td>281 pF</td>
<td>8 pF</td>
<td>355 MHz/v</td>
<td>1.0 cm²</td>
</tr>
<tr>
<td></td>
<td>±650 V</td>
<td></td>
<td></td>
<td>562 pF</td>
<td>16 pF</td>
<td>178 MHz/v</td>
<td>4.0 cm²</td>
</tr>
</tbody>
</table>

DC-Link: V vs. I

2G MB GaN e-FET

3-ϕ bB CSI System

HW & Measurements
Monolithic Bidirectional Switch

Equivalent Circuit

- **ON**
 - ON
 - OFF

- **OFF**
 - ON
 - OFF

- **Bidirectional Voltage Blocking**
- **Bidirectional Current Flow**

Conventional 2G Driver

- **Gate Driver Features**
 - Separate On-Off Paths

DC-Link: V vs. I

<table>
<thead>
<tr>
<th>2G MB GaN e-FET</th>
<th>3-φ bB CSI System</th>
<th>HW & Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monolithic Bidirectional Switch

Equivalent Circuit

- **ON**
 - \(V_{gs,p} \)
 - \(V_{gs,n} \)
 - \(S_p \)
 - \(G_p \)
 - \(G_n \)

- **OFF**
 - \(D_{off} \)
 - \(R_{off} \)
 - \(C_g \)
 - \(V_{gs,n} \)

- **Gate Driver Features**
 - Separate On-Off Paths
 - Constant Current Path

- **Bidirectional Voltage Blocking**
- **Bidirectional Current Flow**

Gate-Injection 2G Driver

- \(V_{gs,p} \)
- \(V_{ss} \)
- \(S_n \)
- \(R_{on} \)
- \(R_g \)
- \(C_g \)
Conventional Pulse-Width Modulation (PWM)

Active States

\[
\begin{align*}
[ab] & \quad i_{ph} = [+i_{dc}, -i_{dc}, 0] \\
[ac] & \quad i_{ph} = [+i_{dc}, 0, -i_{dc}] \\
[ba] & \quad i_{ph} = [-i_{dc}, +i_{dc}, 0] \\
[bc] & \quad i_{ph} = [0, -i_{dc}, +i_{dc}] \\
[ca] & \quad i_{ph} = [+i_{dc}, 0, -i_{dc}] \\
[cb] & \quad i_{ph} = [0, +i_{dc}, -i_{dc}] \\
\end{align*}
\]

Zero States

\[
\begin{align*}
[aa] & \quad i_{ph} = [0, 0, 0] \\
[bb] & \quad i_{ph} = [0, 0, 0] \\
[cc] & \quad i_{ph} = [0, 0, 0] \\
\end{align*}
\]

3-φ Load Current Waveforms

\[i_{dc} \]

SV Diagram
Two-Third Modulation (TTM)

Active States

- **[ab]** \[\vec{i}_{ph} = [+i_{dc}, -i_{dc}, 0]\]
- **[ac]** \[\vec{i}_{ph} = [+i_{dc}, 0, -i_{dc}]\]
- **[ba]** \[\vec{i}_{ph} = [-i_{dc}, +i_{dc}, 0]\]
- **[bc]** \[\vec{i}_{ph} = [0, -i_{dc}, +i_{dc}]\]
- **[ca]** \[\vec{i}_{ph} = [+i_{dc}, 0, -i_{dc}]\]
- **[cb]** \[\vec{i}_{ph} = [0, +i_{dc}, -i_{dc}]\]

Zero States

- **[aa]** \[\vec{i}_{ph} = [0, 0, 0]\]
- **[bb]** \[\vec{i}_{ph} = [0, 0, 0]\]
- **[cc]** \[\vec{i}_{ph} = [0, 0, 0]\]

3-Φ Load Current Waveforms

![Graph showing 3-Φ load current waveforms]

SV Diagram

- [Diagram showing SV diagram]

DC-Link: V vs. I

2G MB GaN e-FET

3-Φ bB CSI System

HW & Measurements
- **Conventional PWM vs. TTM (2)**

 ![Graph showing comparison between Conventional PWM and TTM](image)

 Conventional PWM

 TTM

 DC-Link: V vs. I

 2G MB GaN e-FET

 3-φ bB CSI System

 HW & Measurements
Conventional PWM vs. TTM (3)

- **Conventional PWM**

- **TTM**

DC-Link: V vs. I

2G MB GaN e-FET

3-φ bB CSI System

HW & Measurements
- Conventional PWM vs. TTM

Equivalent Circuit

3-φ Line-to-Line Voltage Waveforms

1. v_{ab}
2. v_{bc}
3. v_{ca}
Thank You!

Tack så mycket!