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Abstract: This paper presents a decoupled bearingless cross-flow fan (CFF) that operates at a su-
percritical speed, thereby increasing the maximum achievable rotational speed and fluid dynamic
power. In magnetically levitated CFF rotors, the rotational speed and fan performance are limited
by the bending resonance frequency. This is primarily defined by the low mechanical bending
stiffness of the CFF blades, which are optimised for fluid dynamic performance, and the heavy rotor
magnets on both rotor sides, which add significant mass but a minimal contribution to the overall
rotor stiffness. This results in detrimental deformations of the CFF blades in the vicinity of the rotor
bending resonance frequency; hence, the CFF is speed-limited to subcritical rotational speeds. The
novel CFF rotor presented in this study features additional mechanical decoupling elements with low
bending stiffness between the fan blades and the rotor magnets. Thus, the unbalance forces primarily
deform the soft decoupling elements, which enables them to pass resonances without CFF blade
damage and allows rotor operation in the supercritical speed region due to the self-centring effect
of the rotor. The effects of the novel rotor design on the rotor dynamic behaviour are investigated
by means of a mass-spring-damper model. The influence of different decoupling elements on the
magnetic bearing is experimentally tested and evaluated, from which an optimised decoupled CFF
rotor is derived. The final prototype enables a stable operation at 7000 rpm in the supercritical speed
region. This corresponds to a rotational speed increase of 40%, resulting in a 28 % higher, validated
fluid flow and a 100 % higher static pressure compared to the previously presented bearingless CFF
without decoupling elements.

Keywords: bearingless motors; cross-flow-fan; rotor dynamics; rotor decoupling; resonance frequency;
supercritical speed

1. Introduction

Cross-flow fans (CFFs) installed in the semiconductor industry are exposed to harsh
environmental conditions due to toxic and corrosive gases and are subject to stringent stan-
dards. No wear, friction or contamination, and a rotor inside a hermetically sealed process
chamber are crucial and lead to the highest performance requirements for the implemented
drives. Bearingless motors enable wear-free, practically maintenance-free, and continuous
operation of CFFs under these extreme conditions. In [1], the authors presented the bear-
ingless high-speed CFF for applications in deep ultraviolet (DUV) excimer laser, which are
commonly used as the light source in industrial lithography systems [2]. The fluid dynamic
performance of the CFF is an important factor that limits the gas exchange rate of the lasers
in a given, constrained installation space of complex manufacturing devices. Increasing the
CFF rotational speed and therefore the fluid performance is a key enabler for improving
the laser performance, the scanning speed of lithography systems, and finally, the chip
throughput [3–6]. The maximum achievable rotational speed of current bearingless CFFs
is restricted by the plastic deformation of the CFF rotor at the critical bending resonance
frequency. The operation is therefore limited to subcritical speeds. This paper presents
a bearingless CFF rotor, which is operated supercritically to increase the fluid dynamic
performance. The CFF rotor features additional mechanical elements with low stiffness
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(hereafter referred to as “decoupling elements”), which connect the rotor magnets and the
CFF blades according to Figure 1. The influence of the decoupling elements on the rotor
dynamic behaviour (vibration modes) is examined by a mass-spring-damper model and
the influence on the magnetic bearing is tested with different prototypes. Additionally,
the effects on the CFF’s fluid dynamic performance are evaluated.

Figure 1. Schematic cross-sectional view of the bearingless CFF system in a hermetically sealed
process chamber. The CFF rotor consists of CFF blades, which are decoupled from the rotor magnets
by decoupling elements. By adding components with low mechanical stiffness, i.e., kdE < kCFF blades,
the rotor dynamical behaviour is influenced such that the resonance frequency, which bends the CFF
blades, is shifted to higher rotational speeds.

CFF rotors have a distinctive large length-to-diameter ratio and consist of several thin
blades arranged in a circular manner to achieve the optimal fluid dynamic performance [7–9].
The long and thin blades result in a low mechanical bending stiffness. Consequently, the CFF
rotor plastically deforms under the unbalance forces, which increase quadratically with the
rotational speed, at the critical bending resonance frequency. The use of magnetic bearings
amplifies this problem due to the rotor magnets on both ends of the CFF rotor, which add
significant mass but minimal contribution to the overall rotor bending stiffness. The CFF rotor
presented in [1] consists of two rotor magnets, which are rigidly mounted to the CFF blades as
depicted in Figure 2a. The maximum achievable speed is limited by the bending resonance
frequency. The low bending stiffness of the CFF blades causes plastic deformation of the blades
near the bending resonance frequency, which prevents its surpassing, as shown in Figure 2a
with ω2,CFFfix

. Thus, the CFF is limited to subcritical operation.
In the literature, different control approaches for the active magnetic bearing sys-

tem to dampen, pass or eliminate resonance frequencies are proposed [10–23]. Complex
position control methods are presented to pass the bending resonance frequency of a
flexible test rotor. However, these methods consider massive shafts and Jeffcott rotors
with mass distributions and bending stiffnesses that are not comparable to the CFF rotor,
of which the mechanical design is restricted by the fluid dynamical requirements. Therefore,
the proposed control algorithms are not directly applicable to the problem at hand.

In this paper, however, a rotor design approach is explored to shift the CFF’s critical
resonance frequencies and rotor bending to higher rotational speeds. Additional mechanical
elements with a low stiffness decouple the CFF blades from the rotor magnets. The
vibration behaviour is influenced such that an additional, third resonance frequency occurs
as visualised in Figure 2b. The decoupling elements are deformed under the unbalance
forces at the first two resonance frequencies ω1,CFFdE

and ω2,CFFdE
, which results in a

deflection and small, non-plastic deformation of the CFF blades. The two-mode shapes
differ in the phase shift between rotor magnets and the CFF rotor. The region above the
first two resonance frequencies is referred to as the supercritical region since the CFF
rotor centres itself with respect to the rotational axis [24,25]. The third resonance frequency,



Machines 2024, 12, 223 3 of 14

ω3,CFFdE
, is characterised by the detrimental bending of the CFF blades, similar to the second

resonance frequency of the non-decoupled CFF, which again leads to plastic deformation
of the CFF blades. However, ω3,CFFdE

is shifted to higher frequencies than ω2,CFFfix
of the

non-decoupled rotor. Hence, the new rotational speed limit can be increased.
The design of the multi-component rotor is critical. The decoupling elements must

have a low enough mechanical stiffness to enable effective mechanical decoupling and
therefore prevent the bending of the blades. But the stiffness cannot be too low such
that the fluid dynamic forces acting on the rotor lead to high deflections and instabilities.
Furthermore, the magnetic bearing must be able to withstand the forces that result from
passing through the resonance frequencies ω1,CFFdE

and ω2,CFFdE
.

This paper aims to address these challenges by first modelling the bearingless CFF
rotor with a mass-spring-damper model in Section 2, to analyse the influence of the intro-
duced decoupling element. Various decoupling elements are then experimentally tested,
to evaluate their influence on the magnetic bearing and compared with the mass-spring-
damper model in Section 3. Finally, the fluid dynamic performance of the CFF rotor with
the optimal decoupling element is investigated in Section 4.

Figure 2. Designs of bearingless CFF rotors: (a) The rotor magnets are directly mounted to the
CFF blades (CFFfix), causing plastic deformation at the first critical bending resonance. This limits
the maximum achievable rotational speed. (b) The CFF blades are separated from the magnets by
additional series elastic elements with low mechanical stiffness (CFFdE). This enables the passing of
the first and second bending resonance frequency and shifts the critical bending resonance ω3,CFFdE

to higher rotational speeds.

2. Modelling of CFF Resonance Frequencies

The goal of this section is to gain an understanding of the vibration modes of bearing-
less CFF rotors with and without decoupling elements by means of a mass-spring-damper
(mkd)-model.The focus lies on the comparison of the resonance frequencies and mode
shapes of CFF rotors with rigidly mounted rotor magnets to the newly introduced, decou-
pled rotors, particularly to investigate the modes associated with the bending of the CFF
blades, since these are speed and performance-limiting. The influence of the decoupling
element stiffness is investigated and the effect of shifting the critical bending resonance
frequency to higher frequencies explained.
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2.1. mkd-Model of Bearingless CFF Rotor

The bearingless CFF rotor is modelled using mkd-elements as shown in Figure 3. The
rotor is assumed symmetrical; thus, only symmetrical vibration modes are studied. The
rotor magnets with mass mB are coupled to the fixed reference frame via the magnetic
bearing, which is modelled by the stiffness kB and damping value dB. The parameters kB
and dB can be influenced by the PD position control parameters of the magnetic bearing
according to

kB = P · ki − ks (1)

and
dB = D · ki (2)

where P is the position-proportional and D the velocity-proportional feedback element
of the PD control, ki the force/current and ks the force/displacement constant of the
drive [25]. The CFF blades are represented in a simplified manner with a measured mass
mCFF, bending stiffness kCFF and internal damping di,CFF, while di,CFF << dB. The mass of
the CFF blades is modelled using three mass elements to represent the connection between
the rotor magnets and blades as well as to clearly characterise vibration modes leading to
rotor bending. The decoupling element, connecting the rotor magnets and CFF blades, is
modelled as a spring with stiffness kdE. Its mass and internal damping are assumed to be
negligible. The systems’ mass unbalance is modelled such that it is concentrated in the CFF
centre mass element and that it is created by the small offset ϵ. It denotes the offset of the
mass centre from the axis of rotation, which only influences the resonance amplitude and is
set to a finite small value for this analysis.

Thus, the following equations of motion are obtained for the modelled CFF system

M


ẍB

ẍCFF,e
ẍCFF,c

+ D


ẋB

ẋCFF,e
ẋCFF,c

+ K


xB

xCFF,e
xCFF,c

 =


0
0

Fu(t)/2

. (3)

This results in the unbalance force excitation

Fu(t) = mCFF/4 · ϵ · ω2ejωt, (4)

with ϵ being the mass eccentricity rotating at frequency ω [26–32]. The mass matrix M is
defined as

M =

mB 0 0
0 mCFF/4 0
0 0 mCFF/4

, (5)

the damping matrix D as

D =

dB 0 0
0 di,CFF −di,CFF
0 −di,CFF di,CFF

 (6)

and stiffness matrix K as

K =

kdE + kB −kdE 0
−kdE kCFF + kdE −kCFF

0 −kCFF kCFF

. (7)

To simulate the CFF rotor with rigidly mounted rotor magnets, the spring constant of
the decoupling element can be set to kdE → ∞. Alternatively, for a decoupled CFF rotor,
kdE is set to a finite, variable value. An unbalance force Fu is then applied and the following
amplitudes are evaluated: magnetic bearing deflection x̂B, the CFF blades’ edge deflection
x̂CFF,e and CFF blades’ centre deflection x̂CFF,c.
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Figure 3. Models of bearingless CFF rotors. (a) The decoupled CFF rotor is shown, where (a1) presents
the mechanical and (a2) the simulation mkd-model including elements for the magnetic bearing (kB,
dB), CFF blades (kCFF, di,CFF, mCFF) and decoupling element (kdE), while (a3) shows the algorithm
scheme of the implemented simulation model. (b) The CFF rotor with rigidly mounted rotor magnets,
which is simulated with kdE → ∞.

2.2. Unbalance Response of CFF with Rigidly Mounted Rotor Magnets

The simulated resonance frequencies are evaluated with respect to the ratio between the
magnetic bearing stiffness kB and CFF blades stiffness kCFF and the results shown in Figure 4a.
In general, the case kB/kCFF → 0 represents a free-free supported rotor (kB → 0), with ω1
being the rigid body mode frequency that approaches 0 and ω2 the free-free resonating rotor,
i.e., the bending resonance frequency. For the other extreme edge case of kCFF/kB → 0 the
bearing is assumed to be rigid (kB → ∞). The bending resonance frequency corresponds to
ω1 while ω2 → ∞ represents the resonance of the rotor magnet masses mB on the magnetic
bearing, which is virtually uninfluenced by the blades’ stiffness kCFF.

The parameters of the rigid CFF rotor listed in Figure 4b are applied to the mkd-model,
resulting in the rigid body mode at ω1 = 1920 rpm and the bending resonance mode at
ω2 = 6130 rpm.

The mode shape of ω1 is illustrated in Figure 4d, which represents the resonance
frequency of the magnetic bearing, i.e., the rigid body mode, where the rotor would deflect
from its rotational axis without bending. The rigid body mode does not pose a problem
for the operation of the CFF due to the implementation of a force-rejection algorithm in
the position controller of the drive, which prevents the unbalance force from exciting this
mode [1].
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The mode shape of ω2 depicts the bending of the CFF blades. The CFF blades with
heavy rotor magnets mounted on each end can lead to displacements big enough to cause
plastic deformation of the CFF blades. This results in permanent damage of the rotor, which
strictly limits the directly coupled CFF rotor to subcritical use below ω2.

Figure 4. Unbalance response of CFFfix: (a) From the rigidly mounted CFF mkd-model (kdE → ∞)
resulting systems’ resonance frequencies ω1 and ω2 depending on the stiffness ratio between the
magnetic bearing kB and CFF blades stiffness kCFF. (b) mkd-model parameters of the CFF rotor.
Unbalance force response of the rotor to an unbalance force excitation Fu(t) evaluated at (c1) the
magnetic bearing x̂B and (c2) CFF centre x̂CFF. The bending mode ω2 is determined at 6130 rpm.
(d) Conceptual drawings of the mode shapes show the bending of the CFF blades at ω2, which is the
limiting factor for high-speed operation.

2.3. Unbalance Response of CFF with Decoupled Rotor Magnets

For the CFF rotor with mechanically decoupled rotor magnets, the resonance frequen-
cies are evaluated depending on the ratio between the decoupling element stiffness kdE
and CFF blades stiffness kCFF. For the simulation, the magnetic bearing stiffness kB, which
according to Equation (1) depends on the force/current and force/displacement constants,
defined by the motor topology, and the variable position control parameter P, is set to a
fixed value, which results in stable motor operation.

The system response is shown in Figure 5a and the measured CFF rotor parameters are
listed in Figure 5b. The stiffness ratio kCFF/kdE → 0 represents the case kdE → ∞, which is
again the rigidly mounted CFF rotor with ω1 = 1920 rpm, ω2 = 6130 rpm and ω3 → ∞
from Section 2.2.

To simulate the decoupling between CFF blades and rotor magnets, the stiffness ratio
of kdE/kCFF = 0.5 is applied to the mkd-model. The amplitude and phase of deflection of an
unbalance excitation to this system are then evaluated at the magnetic bearing x̂B, the CFF
blades edge x̂CFF,e as well as centre x̂CFF,c and result in mode shapes of Figure 5d.

The simulation results reveal, that the resonance frequencies of ω1 = 1770 rpm and
ω2 = 3270 rpm shift downwards, compared to the resonance frequencies from the CFF
rotor from Section 2.2.

At ω1, the rotor magnets and CFF blades deflect (in phase) from their initial position,
whereby the CFF blades remain almost undeformed throughout their length. The mode
shape of ω2 differs in the phase-shift between the deflection of the rotor magnets and CFF
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blades. At these rotational speeds, the unbalance forces cause high elastic deformation of
the decoupling elements and much lower elastic deformation of the CFF blades, since the
decoupling elements possess a lower mechanical stiffness (kdE < kCFF). Hence, the critical
resonance frequencies ω1 and ω2 can be passed. The speed range above these frequencies
is considered supercritical, since the CFF rotor self-centres and allows a stable operation up
to the third resonance frequency.

Figure 5. Unbalance response of CFFdE. (a) From the decoupled CFF mkd-model resulting systems’
resonance frequencies ω1, ω2 and ω3 depending on the stiffness ratio between the decoupling element
stiffness kdE and the CFF blades stiffness kCFF. (b) The mkd-model parameters of the CFF rotor with
decoupling elements. Unbalance force response of the rotor to an unbalance force excitation Fu(t)
evaluated (c1) at the magnetic bearing x̂B, (c2) CFF edge x̂CFF,e and (c3) CFF centre x̂CFF. The
resonance frequency at which the CFF blades bend is determined at 8700 rpm. (d) Conceptual
drawings of the mode shapes show the bending of the CFF blades at ω3, which is the limiting factor
for high-speed operation.

The third resonance frequency ω3 occurs at 8700 rpm and is associated with the
detrimental bending of the CFF blades. It is mainly driven by the stiffness kCFF, which
cannot be further modified than what the fluid dynamic design requirements to the blade
geometry allow for. Since plastic deformation only occurs when approaching ω3, the new
speed limit is therefore increased by 42% compared to ω2 of the rotor with rigidly mounted
rotor magnets.

3. Experimental Investigation of Decoupling Elements

The experimental investigation is conducted for different decoupling elements be-
tween the CFF blades and the rotor magnets, to examine their influence on the magnetic
bearing, which can only compensate for forces and allow displacements to a limited extent.
The aim is to determine with which decoupling element the rotor can be operated at the
highest rotational speeds. Moreover, the performed rotor dynamic measurements are
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compared with the simulation results. These measurements are conducted without the
influence of any fluid dynamic loads; therefore, the CFF blades are covered. The rotor
magnet displacements in the magnetic bearing are measured using built-in sensors in
the bearingless motor 1 (BM1) and 2 (BM2). For the CFF blade displacements x̂CFF,e and
x̂CFF,c, laser-based distance sensors S1, S2, and S3 are employed to verify the expected
mode shapes.

3.1. Influence of the Decoupling Elements on Resonance Frequencies

Seven different decoupling elements are characterised and tested, which leads to the
parameters and measured resonance frequencies summarised in Table 1. The respective
bending stiffnesses kdE,i are determined by a force-displacement measurement. All de-
coupling elements consist of the same rubber material and solely vary in their diameter
and length.

Table 1. Characteristic parameters and measured resonance frequencies of the tested decoupling
elements dE1 to dE7.

i kdE,i mdE,i
kdE,i
kCFF

kdE,i
kCFF

mCFF/4
mdE,i

ω1,dE,i ω2,dE,i ω3,dE,i

(−) (N/mm) (g) (−) (−) (rpm) (rpm) (rpm)

(a) − − − − − − 5800 −
(b) 1 16 35 0.80 1.26 3000 6100 −
(c) 2 12.5 51 0.63 0.67 2300 4600 −
(d) 3 10.5 94 0.53 0.31 1900 3500 7400
(e) 4 9.4 60 0.47 0.43 1900 3700 8400
(f) 5 9 43 0.45 0.58 2000 4300 8300
(g) 6 4.9 37 0.25 0.36 1700 3600 8000
(h) 7 4.4 54 0.22 0.22 1400 2800 7600

The measured radial rotor displacements in the magnetic bearing for the CFF with
rigidly mounted rotor magnets are shown in Figure 6a and serve as a reference measure-
ment. The rigid body mode does not pose a problem for the magnetic bearing. However,
a rapidly increasing radial displacement is measured for BM1 and BM2 when approaching
the bending resonance frequency. The unbalance forces lead to a plastic deformation of the
CFF blades, therefore it is not possible to pass approximately 5800 rpm.

The rotor dynamic measurements are performed for seven decoupled CFF rotors
(Figure 6b–h). Auxiliary touch-down bearings prevent a possible collision between the CFF
blades and the static CFF casing walls when passing the first two resonance frequencies.

The aim is to find the decoupling element with the best trade-off between a low enough
stiffness kdE, such that the CFF blades do not plastically bend at the second resonance
frequency, but a high enough stiffness to shift ω3 to higher frequencies. Additionally,
the mass of the decoupling element should be low to prevent extra mass in the rotor, which
leads to a reduction in ω3. Furthermore, a high enough kdE is required for the rotor to
withstand the fluid dynamic forces created by the CFF blades.

The results from Figure 6b,c show that with decoupling elements dE1 and dE2 the
target of supercritical operation is not achieved, because their stiffnesses kdE,1 and kdE,2 are
too high. The magnetic bearing is not able to compensate for the forces when approaching
the resonance frequencies ω2,dE,1 and ω2,dE,2.

The remaining decoupling elements are successfully operated in the supercritical
speed region (Figure 6d–h). It can be seen that decoupling element dE3 has the lowest
resonance frequency ω3; therefore, it reached the lowest maximum speed. This can be
justified by its large mass, which is almost 40% higher compared to the second heaviest
supercritically operated element.

The measurements further show that decoupling element dE4 reaches the highest rota-
tional speed. It offers the best trade-off between a low enough stiffness kdE,4 to successfully
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operate in the supercritical region, and at the same time a high enough stiffness and low
mass mdE,4, which leads to the highest frequency of ω3 in this study.

Figure 6. The measured radial rotor displacements in the magnetic bearing are shown in (a) for
the CFF rotor with rigidly mounted rotor magnets and in (b–h) for different decoupled CFF rotors.
The decoupling element dE4 from measurement (e) results in the highest speed increase of 45%
compared to (a).

3.2. Influence of Decoupling Elements on Mode Shapes

The different mode shapes and the supercritical self-centring effect of the decoupled
CFFs are further verified with laser distance measurements on the CFF blades, which are
summarised in Figure 7. The results of the CFF with rigidly mounted rotor magnets confirm
that the CFF blades start to bend with increasing speed. In the vicinity of the bending
resonance frequency, the low bending stiffness of the CFF blades allows the unbalance
forces to cause plastic deformation of the blades up to 6 mm (see Figure 7a), thus preventing
the passing of the resonance frequency.

The displacements of the CFF rotor with decoupling element dE4 are measured with
the same sensor setup at different rotational speeds. The CFF blades deflect in-phase and
out-of-phase with respect to the rotor magnets close to the first and second resonance
frequencies, respectively. Additionally, an elastic deformation is measured after the second
resonance is passed. The plastic deformation of the CFF blades occurs towards the third
resonance frequency ω3 (see Figure 7(b1)).
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Figure 7. Laser distance sensor measurements of (a) the CFF rotor with rigidly mounted rotor
magnets and (b) the CFF rotor with decoupling element dE4. Measured bearing currents at (b1)
subcritical speed 1500 rpm and (b2) supercritical speeds 4200 rpm and (b3) 6000 rpm, respectively.
The 180° phase-shift between the sub- and supercritical bearing currents shows the phase-shifted
deflections of mode shape ω1 and ω2. The self-centring effect can be seen from the decrease in the
bearing current’s amplitude from 4200 rpm to 6000 rpm.

Furthermore, the bearing currents are evaluated at subcritical speeds of 1500 rpm
(close to ω1), at 4200 rpm (shortly after ω2) and at 6000 rpm (supercritical operation) as
seen in Figure 7(b2). The phase shift of 180° between the bearing currents at 1500 rpm and
4200 rpm demonstrates that the force on the magnetic bearing acts in opposing directions.
This confirms the phase-shifted deflections of mode shapes ω1 and ω2. From the bearing
current at 6000 rpm, a stable supercritical speed operation is detected, clearly showing the
self-centring effect of the rotor from ω2 onwards.

3.3. Comparison and Verification of the mkd-Model

The measured resonance frequencies of the rotors fitted with decoupling elements dE1
to dE7 are plotted on the simulation results from Section 2.3 with respect to the stiffness ratio
of the decoupling element stiffness and the CFF bending stiffness (kdE,i/kCFF) in Figure 8a.
To eliminate the effect of the decoupling element’s mass, which has been neglected in
the mkd-model, the measured resonance frequencies are plotted with respect to the mass-
compensated stiffness ratio kdE,i/kCFF · mCFF/4

mdE,i
in Figure 8b. Comparing the experimental

data with the simulation results, it can be seen that the resonance frequencies ω1, ω2 and ω3
increase with increasing decoupling element stiffness kdE,i for both the experimental data
and the simulation results. The resonance frequency ω3 features the lowest slope. The mass
compensation method leads to a better fit between the theory and measurements according
to Figure 8b. The deviation between simulated and measured resonance frequencies is
explained by the approximated model parameters, e.g., the stiffness values have been
measured by simplified force-displacement measurements. Additionally, the measured
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resonance frequencies have to be estimated in their vicinity, since the rotor cannot be
operated in the resonance itself due to resulting mechanical damages.

Figure 8. Measured and simulated resonance frequencies of CFF rotors with decoupling element
dEi plotted with respect to the (a) stiffness ratio kdE,i/kCFF and (b) mass-compensated stiffness ratio
kdE,i/kCFF · mCFF/4

mdE,i
.

In summary, this section demonstrates the validity of the rotor dynamical study for
CFF rotors with rigidly mounted rotor magnets as well as the introduced, decoupled
rotors. A stiffness ratio between kdE/kCFF of 0.47, i.e., dE4, leads to the highest achievable
rotational speed of the tested decoupling elements. It offers the best trade-off between a
“soft” enough decoupling, to be able to penetrate the supercritical region and at the same
time a “stiff” enough decoupling element, to shift the third resonance frequency to higher
rotational speeds. This leads to an increase in the critical bending resonance frequency from
5800 rpm (rigidly mounted rotor magnets to CFF blades) to 8400 rpm (decoupled rotor
with dE4), which is an increase of 45%. The CFF rotor with decoupling element dE4 assures
a stable operation with low magnetic bearing currents in the supercritical speed region up
to 7000 rpm with a safety margin of 17% from the critical resonance frequency ω3.

4. Pressure-Flow Characteristics of Decoupled CFF-Rotor

The influence of decoupling the CFF rotor on the fluid dynamic performance is
presented in this section. Due to the decoupling elements, the rotor can be operated in the
supercritical region of rotational speed up to 7000 rpm. Air flow and pressure measurements
in this expanded operation range are performed with the decoupled CFF rotor.

Figure 9a shows the image of the decoupled, bearingless CFF system and Figure 9b
the cross-sectional view of the CFF. The rotating CFF blades are surrounded by static
casing walls. They are placed close to the rotating fan blades for optimal fluid dynamic
performance, but the gap is large enough such that the blades avoid contact with the
housing even at the maximum deflection. To prevent a possible collision between the
blades and the casing walls when passing the first two resonance frequencies, touch-down
bearings are installed in the casing wall on each side of the rotor.

Figure 10a shows the resulting pressure-flow curves of the decoupled, supercritically
operated rotor CFFdE,4 and the subcritically operated CFF with rigidly mounted rotor
magnets, which have been performed on a standardised test setup [1]. The measurements
marked in blue show the performance at the speed maximum of 7000 rpm, 17% below the
third resonance frequency expected at 8400 rpm. The previously highest rotational speed of
the directly coupled CFF at 5000 rpm is marked in grey, which is 14% below the expected
bending resonance frequency of 5800 rpm.

Comparing the performance at 5000 rpm of the directly coupled and decoupled CFF,
a decrease in flow rate of 10% is noticed (light blue arrow). This can be justified with
a reduced active CFF blade length since for the decoupled CFF, auxiliary touch-down
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bearings are installed as a safety measure. Therefore, the 40% increase in rotational speed
results in an overall increase in fluid flow of 28% and an increase in pressure of 100%.

Figure 9. The bearingless CFF for fluid dynamic operation: (a) Image of decoupled, bearingless CFF
system including auxiliary touch-down bearings. (b) Schematics of CFF with rotating CFF blades
and static casing walls, where the gap between them should be small for an optimised fluid dynamic
performance, however, large enough to prevent contact even at the maximum blades’ deflection.

Figure 10. Experimental measurements of bearingless CFF during fluid dynamic operation.
(a) Pressure-flow curves for decoupled, supercritically operated rotor CFFdE,4 and subcritically op-
erated CFF with rigidly mounted rotor magnets. The maximum achieved performance is marked
in blue for the decoupled and in grey for the coupled rotor, respectively. (b) Measured radial rotor
displacements in the magnetic bearing of the magnets of BM1 for CFFdE,4 under fluid dynamic loads
and without any fluid dynamic loads. The fluid dynamic forces only cause small displacements in
the magnetic bearing. The CFF is operated up to 7000 rpm with a safety margin of 17% from the
critical resonance frequency ω3.
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Analysing the measured radial rotor displacements in the magnetic bearing of the CFF
rotor under fluid dynamic loads (Figure 10b), it can be concluded that a stable operation is
possible up to 7000 rpm due to the self-centring effect of supercritical operation and that
the fluid dynamic forces only cause small displacements in the magnetic bearing.

5. Discussion and Conclusions

The presented method of decoupling the rotor magnets of bearingless CFFs with
mechanical elements of lower bending stiffness compared to the CFF blades, results in an
increase in rotational speed and fluid dynamical performance. It is shown, that the blade
damaging resonance is shifted to higher frequencies, enabling higher rotational speeds
due to the self-centring effect of the rotor. This results in a 40% speed increase and leads
to an increase in fluid flow of 28% and an increase in pressure of 100% compared to the
previously presented bearingless CFF without decoupling elements.

To achieve a high-speed and high-performance bearingless CFF, the challenge is
to increase the rotational speed with measures, that do not negatively impact the fluid
dynamic performance.

Methods to increase the rotors’ mechanical stiffness and thus the achievable speed,
e.g., through design adaptations such as thicker blades or axial rods for rotor stiffening,
mostly result in lower fluid performance. Nevertheless, our approach still allows us to
expand the CFF design with measures to increase the CFF blades’ stiffness.

To the authors’ knowledge, there is no comparable control strategy for bearingless
motors to pass the bending resonance frequency without the risk of damaging the CFF
blades, especially due to their unique mass distribution and bending stiffness. In com-
parison, the presented approach shifts the blade damaging resonance frequency to higher
rotational speeds, hence ensuring that the rotor does not have to be operated in its vicinity
or even to pass it.

In summary, the presented method offers a space-saving, simple yet effective mechan-
ical design approach to increase the bearingless’ CFFs fluid dynamic performance.

Author Contributions: Conceptualisation, I.B., D.S. and T.N.; methodology, I.B. and D.S.; investiga-
tion and validation, I.B.; writing—original draft preparation, I.B.; writing—review and editing, I.B.,
D.S., T.N. and J.W.K.; supervision, D.S. and J.W.K.; project administration, J.W.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Swiss Innovation Agency Innosuisse, grant number 46738.1.

Data Availability Statement: Data presented in this study are available on request from the cor-
responding author. The data are not publicly available due to internal policies of the industry
research partner.

Acknowledgments: The authors gratefully thank the Swiss Innovation Agency Innosuisse for their
financial support and Levitronix GmbH for their financial, scientific, and technical contributions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bagaric, I.; Hu, R.; Steinert, D.; Nussbaumer, T.; Kolar, J.W. Comparative Evaluation of High-Speed Bearingless Cross-Flow Fan

Designs for Lithography Excimer Lasers. Machines 2023, 11, 611. [CrossRef]
2. Basting, D.; Marowsky, G. Excimer Laser Technology; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-642-05749-6.
3. Matsunaga, T.; Enami, T.; Kakizaki, K.; Saito, T.; Tanaka, S.; Nakarai, H.; Inoue, T.; Igarashi, T. Extremely high-NA high-

throughput-scanner-compatible 4-kHz KrF excimer laser for DUV lithography. In Proceedings of the 26th Annual International
Symposium on Microlithography (SPIE), Santa Clara, CA, USA, 14 September 2001; Volume 4346, pp. 1617–1626. [CrossRef]

4. Kakizaki, K.; Sasaki, Y.; Inoue, T.; Sakai, Y. High-repetition-rate (6kHz) and long-pulse-duration (50ns) ArF excimer laser for
sub-65nm lithography. Rev. Sci. Instrum. 2006, 77, 035109. [CrossRef]

5. Tsushima, H.; Katsuumi, H.; Ikeda, H.; Asayama, T.; Kumazaki, T.; Kurosu, A.; Ohta, T.; Kakizaki, K.; Matsunaga, T.; Mizoguchi,
H. Extremely long life and low-cost 193nm excimer laser chamber technology for 450mm wafer multipatterning lithography. In
Proceedings of the Optical Microlithography XXVII (SPIE), San Jose, CA, USA, 4 April 2014; Volume 9052, pp. 411–418. [CrossRef]

http://doi.org/10.3390/machines11060611
http://dx.doi.org/10.1117/12.435703
http://dx.doi.org/10.1063/1.2182744
http://dx.doi.org/10.1117/12.2046189


Machines 2024, 12, 223 14 of 14

6. Borisov, V.M.; El’tsov, A.V.; Khristoforov, O.B. High-power, highly stable KrF laser with a pulse repetition rate. Quantum Electron.
2015, 45, 691–696. [CrossRef]

7. Zhang, W.; Yuan, J.; Si, Q.; Fu, Y. Investigating the In-Flow Characteristics of Multi-Operation Conditions of Cross-Flow Fan in
Air Conditioning Systems. Processes 2019, 7, 959. [CrossRef]

8. Zou, T.; Zhan, D.; Hu, X.; Hu, S.; Li, Y. Experimental and numerical study of cross-flow fan in air-conditioner indoor unit. Int. J.
Refrig. 2022, 141, 102–111. [CrossRef]

9. Cai, X.; Zhang, C.; Wang, B. Numerical Study on Fluid Dynamic Characteristics of a Cross-Flow Fan. J. Mar. Sci. Eng. 2023,
11, 846. [CrossRef]

10. Zheng, S.; Han, B.; Wang, Y.; Zhou, J. Optimization of damping compensation for a flexible rotor system with active magnetic
bearing considering gyroscopic effect. IEEE/ASME Trans. Mechatron. 2014, 20, 1130–1137. [CrossRef]

11. Tang, E.; Fang, J.; Zheng, S.; Jiang, D. Active vibration control of the flexible rotor to pass the first bending critical speed in high
energy density magnetically suspended motor. J. Eng. Gas Turbines Power 2015, 137, 112501. [CrossRef]

12. Tang, E.; Han, B.; Zhang, Y. Optimum compensator design for the flexible rotor in magnetically suspended motor to pass the first
bending critical speed. IEEE Trans. Ind. Electron. 2015, 63, 343–354. [CrossRef]

13. Heindel, S.; Becker, F.; Rinderknecht, S. Unbalance and resonance elimination with active bearings on a Jeffcott Rotor. Mech. Syst.
Signal Process. 2017, 85, 339–353. [CrossRef]

14. Ran, S.; Hu, Y.; Wu, H. Design, modeling, and robust control of the flexible rotor to pass the first bending critical speed with
active magnetic bearing. Adv. Mech. Eng. 2018, 10. [CrossRef]

15. Ran, S.; Hu, Y.; Wu, H.; Cheng, X. Active vibration control of the flexible high-speed rotor with magnetic bearings via phase
compensation to pass critical speed. J. Low Freq. Noise Vib. Act. Control. 2019, 38, 633–646. [CrossRef]

16. Zheng, Y.; Mo, N.; Zhou, Y.; Shi, Z. Unbalance compensation and automatic balance of active magnetic bearing rotor system by
using iterative learning control. IEEE Access 2019, 7, 122613–122625. [CrossRef]

17. Kuppa, S.K.; Lal, M. Dynamic behaviour analysis of coupled rotor active magnetic bearing system in the supercritical frequency
range. Mech. Mach. Theory 2020, 152, 103915. [CrossRef]

18. Gong, L.; Zhu, C. Vibration suppression for magnetically levitated high-speed motors based on polarity switching tracking filter
and disturbance observer. IEEE Trans. Ind. Electron. 2020, 68, 4667–4678. [CrossRef]

19. Cui, P.; Du, L.; Zhou, X.; Li, J.; Li, Y.; Wu, Y. Harmonic vibration control of MSCMG based on multisynchronous rotating frame
transformation. IEEE Trans. Ind. Electron. 2021, 69, 1717–1727. [CrossRef]

20. Zheng, S.; Wang, C. Rotor balancing for magnetically levitated TMPs integrated with vibration self-sensing of magnetic bearings.
IEEE/ASME Trans. Mechatron. 2021, 26, 3031–3039. [CrossRef]

21. Gallego, G.B.; Rossini, L.; Achtnich, T.; Araujo, D.M.; Perriard, Y. Novel generalized notch filter for harmonic vibration suppression
in magnetic bearing systems. IEEE Trans. Ind. Appl. 2021, 57, 6977–6987. [CrossRef]

22. Alcorta, R.; Chouvion, B.; Montagnier, O. Dynamics of a non-linear Jeffcott rotor in supercritical regime. Int. J. Non-Linear Mech.
2023, 148, 104272. [CrossRef]

23. Xu, H.; Li, J.; Lu, Y.; Li, H. Unbalance Control for High-Speed Active Magnetic Bearing Systems Without Speed Sensors. IEEE
Trans. Transp. Electrif. 2024, 1. [CrossRef]

24. Li, J.; Chen, P.; Liu, J.; Pan, M.; Chen, Q.; Cui, P. Dynamic Modeling and Self-Centering Effect Analysis of Magnetically Suspended
Rotor System. IEEE Sensors J. 2023, 23, 24271–24278. [CrossRef]

25. Schweitzer, G.; Maslen, E.H. Magnetic Bearings; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-642-10153-3.
26. Kliem, W.; Pommer, C.; Stoustrup, J. Stability of rotor systems: A complex modelling approach. Z. Angew. Math. Phys. ZAMP

1998, 49, 644–655. [CrossRef]
27. Gasch, R.; Nordmann, R.; Pfützner, H. Rotordynamik; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3-540-41240-9.
28. Baumgartner, T.; Kolar, J.W. Multivariable state feedback control of a 500,000-r/min self-bearing permanent-magnet motor.

IEEE/ASME Trans. Mechatron. 2014, 20, 1149–1159. [CrossRef]
29. Pavlenko, I.V.; Simonovskiy, V.I.; Demianenko, M.M. Dynamic Analysis of Centrifugal Machines Rotors Supported on Ball

Bearings by Combined Application of 3D and Beam Finite Element Models. IOP Conf. Ser. Mater. Sci. Eng. 2017, 233, 012053.
[CrossRef]

30. Ruggiero, A.; D’Amato, R.; Magliano, E.; Kozak, D. Dynamical simulations of a flexible rotor in cylindrical uncavitated and
cavitated lubricated journal bearings. Lubricants 2018, 6, 40. [CrossRef]

31. Hutterer, M.; Schroedl, M. Stabilization of active magnetic bearing systems in the case of defective sensors. IEEE/ASME Trans.
Mechatron. 2021, 27, 3672–3682. [CrossRef]

32. Hubmann, E.J.; Weissofner, F.; Steinert, D.; Nussbaumer, T.; Kolar, J.W. Novel Acoustic Failure Prediction Method for Active
Magnetic Bearing Systems. IEEE/ASME Trans. Mechatron. 2023, 1–12. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1070/QE2015v045n08ABEH015658
http://dx.doi.org/10.3390/pr7120959
http://dx.doi.org/10.1016/j.ijrefrig.2022.05.020
http://dx.doi.org/10.3390/jmse11040846
http://dx.doi.org/10.1109/TMECH.2014.2344664
http://dx.doi.org/10.1115/1.4030264
http://dx.doi.org/10.1109/TIE.2015.2472534
http://dx.doi.org/10.1016/j.ymssp.2016.08.016
http://dx.doi.org/10.1177/1687814018757536
http://dx.doi.org/10.1177/1461348418819404
http://dx.doi.org/10.1109/ACCESS.2019.2938222
http://dx.doi.org/10.1016/j.mechmachtheory.2020.103915
http://dx.doi.org/10.1109/TIE.2020.2989710
http://dx.doi.org/10.1109/TIE.2021.3059555
http://dx.doi.org/10.1109/TMECH.2021.3051372
http://dx.doi.org/10.1109/TIA.2021.3062587
http://dx.doi.org/10.1016/j.ijnonlinmec.2022.104272
http://dx.doi.org/10.1109/TTE.2024.3366551
http://dx.doi.org/10.1109/JSEN.2023.3307356
http://dx.doi.org/10.1007/s000000050113
http://dx.doi.org/10.1109/TMECH.2014.2323944
http://dx.doi.org/10.1088/1757-899X/233/1/012053
http://dx.doi.org/10.3390/lubricants6020040
http://dx.doi.org/10.1109/TMECH.2021.3131224
http://dx.doi.org/10.1109/TMECH.2023.3301815

	Introduction
	Modelling of CFF Resonance Frequencies
	mkd-Model of Bearingless CFF Rotor
	Unbalance Response of CFF with Rigidly Mounted Rotor Magnets
	Unbalance Response of CFF with Decoupled Rotor Magnets

	Experimental Investigation of Decoupling Elements
	Influence of the Decoupling Elements on Resonance Frequencies
	Influence of Decoupling Elements on Mode Shapes
	Comparison and Verification of the mkd-Model

	Pressure-Flow Characteristics of Decoupled CFF-Rotor
	Discussion and Conclusions
	References

