Novel Clamping Modulation for Three-Phase Buck-Boost AC Choppers

D. Menzi,
A. Yang,
S. Chhawchharia,
J. W. Kolar

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Novel clamping modulation for three-phase buck-boost ac choppers

David Menzi,* Aobo Yang, Saransh Chhawchharia, and Johann. W. Kolar
Power Electronic Systems Laboratory, ETH Zurich, Zurich, Switzerland
✉ E-mail: menzi@iem.ee.ethz.ch

Three-phase ac choppers feature output voltage amplitude controllability and enable more compact system realizations compared to autotransformers. For the practical realization (advantageously standard power transistors with unipolar voltage blocking capability such as MOSFETs can be employed as a naturally resulting offset voltage between the grid and the input-stage starpoint ensures purely positive power transistor voltages. This offset voltage is, however, not strictly defined and may drift to higher voltage values, resulting in high power transistor voltage stresses and finally a potential overvoltage breakdown. Traditionally, the offset voltage drift is prevented by introducing discharge resistors across the input-stage capacitors which, however, results in substantial ohmic losses. This paper analyzes the offset voltage formation in ac choppers and proposes a novel clamping modulation scheme which ensures a strictly defined and minimum time-varying offset voltage without need for discharge resistors. Theoretical analyses and circuit simulations are finally experimentally verified with a 400 V (rms, line-to-line) 50Hz grid connected three-phase buck-boost ac chopper with 3 kW rated power.

Offset voltage formation and modulation: For completeness, the operational concept of the three-phase buck-boost ac chopper in Figure 1 is briefly recapitulated here and the Appendix provides a more detailed analysis of the basic voltage an current formation. For a given grid line-to-neutral input voltage amplitude U_g and a desired output voltage amplitude U_c, the system operates with a modulation index M which is then translated into PWM duty cycles for the buck input D_{hi} or the boost output stage D_{bo}, as

$$M = \frac{U_c}{U_c - U_{bn}} = \min(M, 1)$$

Advantageously, this modulation results in a mutually exclusive operation of the buck and the boost stage [14] where, for example, for $U_c \leq \frac{U_c}{2}$ (or any other desired value) is reached at t_1 and thus do not create any switching losses. Meanwhile the buck-stage switches operate synchronously with PWM and a relative on-time D_{hi} of the high-side switches s_a, s_b, (the low-side switching signals for s_a, s_b, s_c are set complementary) to steps down the input voltage similar to a dc-dc converter [2]. As mentioned, three-phase ac choppers feature inherently positive input (and output) stage voltages and Figure 2 depicts the relevant waveforms of the ac chopper in Figure 1 during startup obtained from a circuit simulation in PLECS [15].

At the time instance $t = t_1$ the converter is connected to the three-phase grid with a line-neutral voltage amplitude $U_g = 325$ V (see Figure 2a) via precharge resistors R_p, through the power transistor switches are turned off and Figure 3a depicts the relevant current paths during this precharge stage: The grid voltages u_a, u_b, u_c impress sinusoidal differential mode (DM) voltages at the input terminals a, b, c and thus across the capacitors C_{an}, C_{bn}, C_{cn} and at the same time the body diodes of the power transistors prevent negative input-stage voltages $u_m = \min(u_a, u_b, u_c)$. Here the body diodes of the instantaneously most negative phase a start to conduct at $t = t_1$ and thus a common-mode (CM) offset voltage $u_m = \frac{1}{3} (u_a + u_b + u_c)$ is naturally built up and results to $u_m \approx 0 V$ (see Figure 2c). Note that u_m is slightly varying over time due to discharge resistors R_d parallel connected to each input (and output) capacitor.

Once the auxiliary circuits (controller, measurements, gate drivers) have started, the relays s_h bypass the precharge resistors and the converter begins PWM operation at $t = t_2$ and ramps up the output voltages u_{an}, u_{bn} and u_{cn} and current i_a, i_b, i_c. Steady-state operation with $U_c = \frac{U_c}{2}$ (or any other desired value) is reached at t_2.

Figure 2c depicts the resulting input-stage voltages $u_{m\alpha}, u_{m\beta}, u_{m\gamma}$ for conventional modulation where the offset voltage u_m begins to drift to wards 400 V with the beginning of the PWM operation at $t = t_2$. This results in elevated power transistor blocking voltage $V_{dss\alpha}$ of approximately 725 V but does not negatively impact the generated output voltages, as u_m represents a CM voltage component which cannot drive any currents into the open-starpoint load. As discussed in [6] the culprit for this offset deviation is the PWM interval delay / dead time of duration t_d (occurring twice every switching period $T_s = 1/f_s$) during which both high-side and low-side power transistors of the input stage are in off state. The resulting current paths during the interlock delay time for $t = t_3$ where $i_a < 0 A$ and $i_b, i_c > 0 A$ are depicted in Figure 3b and similarly to the precharge interval the diode conduction leads to an inherent increase of the offset voltage u_m, which scales with both, the output current amplitude i_m and the relative duration of the dead-time t_d/T_s [6]. Ref. [6] provides design guidelines for the selection of suitable discharge resistors across the input and output-stage filter capacitors. However, this approach results in substantial ohmic losses of approximately 1% of the processed power, which is obviously undesirable when aiming for high-efficiency power conversion.

Thus, after reviewing the underlying principle of the offset voltage formation in three-phase ac choppers this paper proposes a novel clamping modulation scheme that results in a strictly defined and minimal time-varying offset voltage without need for discharge resistors. Theoretical analyses and circuit simulations are experimentally verified with a 400 V (rms, line-to-line) 50Hz grid connected three-phase buck-boost ac chopper of 3 kW rated power.

Introduction: Autotransformers enable ac voltage amplitude adjustment in applications where no isolation or grid frequency adjustment is required. Operating at the grid frequency f_g, the required magnetic core volume and weight is large and thus pulse-width modulated (PWM) ac choppers operating at a switching frequency $f_s \gg f_g$ enable substantial weight and volume gains [1, 2].

Single-phase ac choppers were first proposed in the eighties [3–5] and required power switches with bipolar voltage blocking capability typically realized as an inverse-series connection of two MOSFETs with anti-parallel body diodes and thus unipolar voltage blocking capability. In the following decade the concept of the ac chopper was extended to three-phase systems [6–9] and topologies with buck, boost or buck-boost capability [10–13] were proposed. Advantageously the presence of an offset voltage between the grid starpoint G and the input-stage starpoint m (see Figure 1; the same also applies to the output stage) enables a strictly positive voltage across the power switches and therefore standard MOSFETs with unipolar voltage blocking capability can be employed. The offset voltage u_m is built up automatically upon connection to the grid but is, however, not strictly defined and may drift to higher voltage values during operation, resulting in elevated power transistor voltage stresses and potentially an overvoltage breakdown. This offset voltage drift is already described in [6] and is addressed there by introducing discharge resistors across the input and output-stage filter capacitors. However, this approach results in substantial ohmic losses of approximately 1% of the processed power, which is obviously undesirable when aiming for high-efficiency power conversion.

Figure 1 Main power circuit of the considered three-phase buck-boost ac chopper from [13] with converter phase a highlighted in light blue: In contrast to the bipolar sinusoidal grid input u_a, u_b, u_c (with frequency f_g and line-to-neutral amplitude U_g) and output voltages u_{an}, u_{bn}, u_{cn} (with frequency $f_c = f_g$ and adjustable amplitude \hat{U}_c), the input (buck) u_{mn}, u_{bn}, u_{hn} and output (boost) stage voltages u_{mn}, u_{bn}, u_{cn} comprise an offset voltage u_m and u_{cn}, respectively: assuming strictly positive (unipolar) voltages across the power semiconductors. Operation with constant PWM duty cycles in the buck or the boost stage results in naturally sinusoidal input i_a, i_b, i_c and output currents i_{bn}, i_{bn}, i_{cn}.
resistors R_p connected in parallel to the input (and output) stage filter capacitors as indicated in Figure 3b which maintain $u_{\text{off}} \approx \hat{U}_g$. This simple discharge-resistor-based offset voltage control is employed, for example, in [16–19] but results in substantial ohmic losses of approximately 1% of the nominal converter power [6] which is obviously undesirable, especially with respect to the part-load efficiency.

Aiming for high-efficiency power conversion this paper proposes a novel clamping modulation strategy as highlighted in Figure 2c.ii where the phase with the instantaneously most negative grid voltage simultaneously turns on both, the high-side and the low-side switch for one third of the grid period $T_a = 1/f_\text{c}$, thereby connecting the input-stage reference potential u_{ref} to the corresponding grid terminal (the Appendix provides a detailed comparison to the conventional (continuous) modulation). This clamping modulation thus represents a discontinuous PWM (DPWM) operation strategy and the time-varying u_{off} is now strictly defined as

$$u_{\text{off}}(t) = -\min(u_a(t), u_b(t), u_c(t)).$$

(2)

Thus, the maximum power transistor blocking voltage during PWM operation, $U_{\text{DPWM}} = \sqrt{3}U_g = 565$ V, can be limited to the grid line-to-neutral voltage which enables the safe operation with 900 V power transistor technology. Further, the buck-boost inductor currents i_a, i_b, i_c cancel out in the input stage in a way that only a linear current i_{lin} flows through the precharging resistor R_p.

Experimental verification: To verify the proposed clamping modulation a 3 kW hardware demonstrator according to the specifications in Figure 2 is constructed. SiC MOSFETs (C3M0010090K) with 900 V voltage rating are employed which provide sufficient blocking voltage margin for $U_{\text{DPWM}} = 565$ V resulting in the European 400 V (rms, line-to-line) three-phase grid.
the grid input current i_a and the output stage and the characteristic voltage shape of U_{an} and the generated phase a output voltage u_{a} can be observed. A second oscilloscope (b) is triggered synchronously and depicts the detailed waveforms of the converter phase a, namely the input- u_{an} and output-stage voltage u_{AN} with the characteristic zero-volt clamping intervals, as well as the grid input current i_a and the back-boost inducer current i_{La}.

As predicted by the simulations, the offset voltage u_{an} is not strictly defined and reaches elevated values towards 400 V in steady-state operation. In contrast the proposed clamping modulation presented in Figure 4b results in the predicted time-variation minimum offset voltage u_{an} and substantially reduced power transistor blocking voltage stresses. Note that no transient oscillations result in the beginning of each clamp adjustment interval.

Figure 5 further presents experimental waveforms with focus on converter phase a in buck-boost operation where for a grid input voltage $U_{g} = 165$ V (≈ 115 Vrms) the output voltage U_{o} is ramped up from 0 V to 325 V. There, the proposed clamping logic is applied to both, the input and output stage and the characteristic voltage shape of u_{an} and u_{AN} with zero-voltage intervals during 1/3 of the grid period can be observed. As can be noted, the grid input current i_a is fully sinusoidal and a smooth transition from back to boost operation can be achieved, thus verifying the proposed clamping modulation scheme.

Conclusion: Three-phase ac choppers enable ac voltage amplitude adjustment (without frequency adjustment and isolation) and allow for a compact system realization compared to autotransformers. Advantages, three-phase ac choppers can employ standard MOSFETs with unipolar blocking voltage capability due to the naturally established between the grid and the input-stage startpoint. The offset voltage is, however, not strictly defined and dangerously high voltage levels may result in operation. The novel clamping modulation proposed and verified in this paper assures operation with a strictly defined and minimum offset voltage, which is a major improvement over the state-of-the-art offset voltage control based on discharge resistors which are causing relatively large power losses and resulting in limited conversion efficiency, especially in part-load operation.

Author contributions: David Menzi: Conceptualization; data curation; formal analysis; investigation; methodology; project administration; software; supervision; visualization; writing—original draft; writing—review and editing. Aobo Yang: Formal analysis; investigation; software; validation; visualization; writing—original draft. Saransh Chhawchharia: Conceptualization; investigation; methodology; project administration; resources; software; supervision. Johann W. Kolar: Conceptualization; funding acquisition; methodology; project administration; resources; supervision; writing—review and editing.

Conflict of interest statement: The authors declare no conflicts of interest.

Data availability statement: Data available on request from the authors.

$U_{g} = 325$ V, that is, 230 Vrms. The input-stage voltages u_{an}, u_{bn}, u_{cn} are measured with differential probes and their offset voltages u_{an} is obtained with a math channel. The main hardware demonstrator circuit parameters are identical to Figure 2.

As can be noted, the grid input current i_a is ramped up from 0 V to 325 V. There, the proposed clamping logic is applied to both, the input- u_{an} and output-stage voltage u_{AN} with the characteristic zero-volt clamping intervals, as well as the grid input current i_a and the back-boost inducer current i_{La}.

Figure 5 further presents experimental waveforms with focus on converter phase a in buck-boost operation where for a grid input voltage $U_{g} = 165$ V (≈ 115 Vrms) the output voltage U_{o} is ramped up from 0 V to 325 V. There, the proposed clamping logic is applied to both, the input and output stage and the characteristic voltage shape of u_{an} and u_{AN} with zero-voltage intervals during 1/3 of the grid period can be observed. As can be noted, the grid input current i_a is fully sinusoidal and a smooth transition from back to boost operation can be achieved, thus verifying the proposed clamping modulation scheme.

Conclusion: Three-phase ac choppers enable ac voltage amplitude adjustment (without frequency adjustment and isolation) and allow for a compact system realization compared to autotransformers. Advantages, three-phase ac choppers can employ standard MOSFETs with unipolar blocking voltage capability due to the naturally established between the grid and the input-stage startpoint. The offset voltage is, however, not strictly defined and dangerously high voltage levels may result in operation. The novel clamping modulation proposed and verified in this paper assures operation with a strictly defined and minimum offset voltage, which is a major improvement over the state-of-the-art offset voltage control based on discharge resistors which are causing relatively large power losses and resulting in limited conversion efficiency, especially in part-load operation.

Author contributions: David Menzi: Conceptualization; data curation; formal analysis; investigation; methodology; project administration; software; supervision; visualization; writing—original draft; writing—review and editing. Aobo Yang: Formal analysis; investigation; software; validation; visualization; writing—original draft. Saransh Chhawchharia: Conceptualization; investigation; methodology; project administration; resources; software; supervision. Johann W. Kolar: Conceptualization; funding acquisition; methodology; project administration; resources; supervision; writing—review and editing.

Conflict of interest statement: The authors declare no conflicts of interest.

Data availability statement: Data available on request from the authors.

$U_{g} = 325$ V, that is, 230 Vrms. The input-stage voltages u_{an}, u_{bn}, u_{cn} are measured with differential probes and their offset voltages u_{an} is obtained with a math channel. The main hardware demonstrator circuit parameters are identical to Figure 2.

As can be noted, the grid input current i_a is ramped up from 0 V to 325 V. There, the proposed clamping logic is applied to both, the input- u_{an} and output-stage voltage u_{AN} with the characteristic zero-volt clamping intervals, as well as the grid input current i_a and the back-boost inducer current i_{La}.

Figure 5 further presents experimental waveforms with focus on converter phase a in buck-boost operation where for a grid input voltage $U_{g} = 165$ V (≈ 115 Vrms) the output voltage U_{o} is ramped up from 0 V to 325 V. There, the proposed clamping logic is applied to both, the input and output stage and the characteristic voltage shape of u_{an} and u_{AN} with zero-voltage intervals during 1/3 of the grid period can be observed. As can be noted, the grid input current i_a is fully sinusoidal and a smooth transition from back to boost operation can be achieved, thus verifying the proposed clamping modulation scheme.

Conclusion: Three-phase ac choppers enable ac voltage amplitude adjustment (without frequency adjustment and isolation) and allow for
Appendix:

AC Chopper Voltage and Current Formation: The goal of this Appendix is to provide details on the basic voltage and current formation of the AC chopper in Figure 1 and to compare the PWM switching patterns of the conventional (continuous) and the DPWM / clamping modulation.

In Figure A1, the waveforms (generated in MATLAB) for conventional modulation and buck operation are displayed. A low switching frequency $f_s = 24f_g$ is selected for illustration purposes, whereas for the practical realization $f_s \gg f_g$ is selected to minimize the size of the passive components. Here, the input-stage half-bridges are switched synchronously with a constant duty cycle D_{thn} for the high-side power transistors defined by (1) (Figure A1b). The generated switch-node voltages V_{thn}, V_{thn}, and V_{thn} (Figure A1c) comprise a CM component which cannot drive any current in the open-starpoint system. Further, the resulting high-frequency DM voltage-time area in phase a (causing a high-frequency current ripple in the buck-boost inductor) is highlighted and the low-frequency DM voltage component is (first approximation) equal to the output voltage V_{th}. Figure A1d further illustrates the buck-boost inductor currents i_L, i_L, and i_L. In buck operation the output stage high-side switches S_a, S_b, and S_c are constantly on, such that the low-frequency component of the inductor currents i_L, i_L, and i_L is identical to the output currents i_L, i_L, and i_L. For phase a, further the power transistor current i_{sa}, i_{sb}, and i_{sc} and the resulting low-frequency grid input current i_L are highlighted.

When applying the DPWM/clamping modulation, a time-varying offset voltage V_{thn} according to (2) is impressed simultaneously turning on the high-side and low-side power transistor of the phase with the currently negative grid input voltage as illustrated in Figure A2a,b. Note that in contrast to the standard (continuous) modulation, the DPWM operation results in a low-frequency excitation of the input stage starpoint n with respect to ground, which limits the maximally allowed capacitance from n to protective earth in the electromagnetic interference filter to approximately 50 nF to comply with the 3.5 mA (rms) leakage current limit. As can be observed in Figure A2c, the DPWM offset voltage V_{thn} impacts the CM component of the switch-node voltages V_{thn}, V_{thn}, and V_{thn}, which now shows a time-varying envelope. However, the offset voltage does not alter the generated DM voltage components relevant for the three-phase output voltage and current formation which are identical to Figure A1d. As illustrated in Figure A2d for phase a, the power transistor currents i_{la}, i_{la}, and i_{la} remain pulsed in the clamping interval where both S_a and S_c are permanently turned on. This is a direct consequence of Kirchhoff’s current law in the grid n and the input stage starpoint n as illustrated in Figure A2e where the switching operation of the remaining two phases b, c defines the high-frequency current flow in the clamped power transistors of phase a.

![Fig. A2 Main waveforms for the DPWM / clamping modulation. For comparison to the conventional (continuous) modulation the operating point and the displayed signals in (a)–(d) are identical to Figure A1; (e) further illustrates the current paths in the phase a input stage during the clamping interval.](image-url)