Evaluation of a Delta-Connection of Three Single-Phase Unity Power Factor Rectifier Systems (Δ-Rectifier) in Comparison to a Direct Three-Phase Rectifier Realization

Part I – Modulation Schemes and Input Current Ripple

JOHANN W. KOLAR
Swiss Federal Institute of Technology Zurich
Power Electronic Systems Laboratory
ETH-Zentrum/IPES/ETL H22
CH-8092 Zurich/SWITZERLAND
Phone: +41-1-632-2834
Email: kolar@lem.ee.ethz.ch

FRANZ STÖGERER
Technical University Vienna
Power Electronics Group
Gusshausstr. 27/E372,
A-1040 Wien /AUSTRIA
Phone: +43-1-58801-37228
Email: fstoegerer@ieam.tuwien.ac.at

YASUYUKI NISHIDA
Nihon University
Energy and Electronics Laboratory
Tokusada, Tamura-cho
Koutiyama/JAPAN
Phone: +81-24-956-8788
Email: nishida@ee.ce.nihon-u.ac.jp

Abstract. In this paper the delta connection of three single-phase boost unity power factor rectifier units (Δ-rectifier) is analyzed based on an equivalent star connection. As the calculation of the input voltage space vectors which are associated with the combinations of the power transistor switching states of the line-to-line units shows the Δ-rectifier and a direct three-phase unity power factor (VIENNA) rectifier are characterized by equal modulation limits. Furthermore, the Δ-rectifier shows like the VIENNA Rectifier a redundancy of switching states concerning input voltage formation. This redundancy has to be employed for a control and/or suppression of a low frequency zero sequence current component circulating inside the Δ-connection of the line-to-line units. According to a digital simulation the switching frequency ripple of the sinusoidal mains current of the Δ-rectifier shows only a slightly higher normalized RMS value as resulting for the VIENNA rectifier. Therefore, in the course of further research, i.e. Part II of this paper, the stresses on the power components of the Δ-rectifier will be calculated in analytical form in order to provide a basis for a comprehensive comparative evaluation and for the dimensioning and practical realization of the system.

1 Introduction

The input stage of telecommunications power supply modules with low effects on the mains currently is frequently realized as star connection of single-phase boost unity power factor rectifier systems [1-4] (cf. Fig.1(a)). As a main advantage as compared to connecting the single-phase systems in delta and/or from line-to-line (cf. Fig.1(c)) this concept shows a lower voltage stress on the power semiconductors. However, for feeding the system from a three-wire mains, i.e. for missing connection of the star point N’ to the mains neutral point N (cf. Fig.1(a)), a control of the partition of the mains line-to-line voltages between the inputs of the phase units and/or of the potential of N’ has to be provided [2]. This is due to the negative incremental input impedance and/or constant input power characteristic of the individual units [1]. Alternatively, N’ could be connected to an artificial mains star point formed by a low-frequency three-phase coupled inductor arrangement with low zero-sequence impedance as proposed in [3]. However, both concepts show drawbacks concerning control complexity and/or power density and realization costs.

Aiming for a highly reliable and compact three-phase rectifier topology, the structure of the power circuit of each phase unit could be extended by inserting

![Fig.1](image-url)
of an additional output diode D_F in the connection to the negative output voltage terminal. The star point N' then can be connected to the center point M of a series connection of two output capacitors C_+ and C_- which are shared by all phase units (cf. Fig.1(b)). The resulting direct three-phase unity power factor rectifier topology is known as VIENNA Rectifier [5] and obviously shows an equal input current shape $i_{U,O}$ and equal stresses on the power components as the system depicted in Fig.1(a) (for equal operating and circuit parameters, i.e. equal switching frequency f_s, equal control of the power transistors S_i, equal inductance of the input inductors L, and equal output voltages $u_{C+} = u_{C-} = U_{O}/2$).

There, instead of the symmetrization of the input phase voltages as required for the star connection of the single-phase units (cf. Fig.1(a)) a control of the symmetry of the partial output voltages has to be controlled which, however, is dynamically less critical and can be performed with considerably lower circuit effort by only a minor modification of the mains current control circuit [5]. Furthermore, for the direct three-phase system for conversion and isolation of the output voltage U_o only a single DC-DC converter stage has to be provided. Alternatively, also two interleaved DC/DC converter systems which are connected to the partial output voltages and which share a common output inductor and a common control circuit [6] could be employed.

For the star connection of single-phase units as well as for the VIENNA rectifier in the case of a failure of a mains phase a continuation of the operation with reduced output power $P = 1/3 P_o = 0.58 P_o$ is possible. The full rated power P_o is available for two-phase operation without overdimensioning of the power semiconductors only for a delta connection of the single-phase units (for short denoted as Δ-rectifier in the following, cf. Fig.1(c)) and for realization of the input stages of the individual line-to-line units as controlled three-phase rectifier bridges [7] (and DC side arrangement of the input inductors, not shown in Fig.1(c) for the sake of clearness). Then, in case one phase of the mains is missing, all single-phase systems can be switched over to the two remaining phases. Under consideration of the requirement of a high reliability as given, e.g. for telecommunications power supply systems this represents a major advantage and motivates a more detailed analysis of the Δ-rectifier despite the relatively high voltage stress on the power semiconductors (as compared to a star connection of the individual units and/or to the VIENNA Rectifier).

In this paper in a first step a concept for coordinated control of the line-to-line units which does provide a minimum RMS value of the mains phase current ripple is derived. There, the considerations are related to a star equivalent circuit which facilitates a direct comparison of the results with the characteristic values of a VIENNA Rectifier. For regular and/or three-phase operation, however, the placing of the inductor on the rectifier DC- or AC-side does not take influence on the formation of the ripple of the mains phase currents and/or on the stresses of the power semiconductor devices.

In section 2 the formation of the input voltages $u_{U,O}$ of the rectifier bridges of the line-to-line units is analyzed in dependency on the switching states of the power transistors S_i ($ij = RS,ST,TR$) and on the signs of the line-to-line currents $i_{U,O}$. Based on this the input voltage space vectors being available for a sinusoidal and/or mains voltage proportional guidance of the mains phase currents $i_{U,O}$ ($i=RS,ST$) and the modulation range of the system are determined. Furthermore, a switching state sequence is defined which does suppress a low frequency component of the zero sequence current circulating inside the delta connection of the line-to-line units. Section 3 details a realization of the derived control concept by individual average current mode controllers for the line-to-line units including a mains voltage feed-forward. Furthermore, the influence of a phase displacement of the triangular carrier signals being employed by the individual line-to-line current controllers on the resulting mains phase current ripple is discussed and the possibility of extending the sinusoidal line-to-line current reference values by a third harmonic (low frequency zero sequence component) for lowering the peak current stress on the power semiconductors [8] is analyzed. In section 4 the theoretical considerations are verified by digital simulations and the dependency of the RMS value of the mains phase current ripple on the modulation index is calculated and compared to the known characteristic values of a VIENNA Rectifier. Finally, in section 5 a survey of the continuation of the system analysis in a Part II of this paper is given which will focus on a comparison of the utilization of the power semiconductors of the Δ-rectifier in comparison to a VIENNA Rectifier as well as on the evaluation of the realization effort under inclusion of the DC/DC converter systems for the conversion and high-frequency isolation of the output voltages of the line-to-line units. Furthermore, there a control concept which features a proper sharing of the total output power between the line-to-line units also for an asymmetry of the mains phase voltages and which is applicable in a wide input voltage range will be proposed.

2 Basic Principle of Operation

2.1 Star Connection Equivalent Circuit

An equivalent circuit of the Δ-rectifier AC side system part is shown in Fig.2(a). According to the input side rectification besides the switching state s_i of a power transistor S_i also the sign $\mbox{sign}(i_{U,O})$ of the line-to-line current $i_{U,O}$ ($ij = RS,ST,TR$) takes influence on the formation of the corresponding input voltage $u_{U,O} = \mbox{sign}(i_{U,O}) (1-s_i) U_o$ (1) ($s_i = 1$ denotes the turn-on state of S_i , $s_i = 0$ denotes the turn-off state).

The line-to-line rectifier input voltages $u_{U,O}$ in general will contain a zero sequence system

\begin{equation}
\begin{align}
\omega_a &= \frac{1}{\sqrt{3}} (u_{U,RS} + u_{U,ST} + u_{U,TR})
\end{align}
\end{equation}

which results in a zero sequence component i_0 of the line-to-line currents $i_{U,O} = i_{U,O} + i_0$ (3)

The zero sequence current i_0 circulates inside the delta connection of the line-to-line units (cf. Figs.2(a) and (c))
and does not take influence on the formation of mains phase currents $i_N(i=R,S,T)$ according to

$$i_{N,i} = i_{N,RS} - i_{N,TR}$$

(shown for phase $i=R$).

The line-to-line current system $i_{N,ij}$ ($j=RS,ST,TR$) is defined in connection with the (symmetrical) mains voltage by the line-to-line rectifier input voltage system remaining after subtraction of the zero sequence voltage component

$$u_{U,ij} = u_{U,ij}' = u_{U,ij} - u_0$$

The line-to-line voltage system defined by (5) can now be transformed into an equivalent phase voltage system

$$u_{U,R}' = \frac{1}{3}(u_{U,RS}' - u_{U,TR}')$$

$$u_{U,S}' = \frac{1}{3}(u_{U,ST}' - u_{U,RS}')$$

$$u_{U,T}' = \frac{1}{3}(u_{U,TR}' - u_{U,ST}')$$

Accordingly, the analysis of the system behavior could be based on an equivalent star connection as shown in Fig.2(b). There the inductance of the inductors connected in series at the AC side has to be reduced by a factor of 3,

$$L = \frac{1}{3} L_\Delta$$

in order to achieve equal inner impedances of the actual delta and of the equivalent star connection.

The star equivalent circuit is valid directly also for the VIENNA Rectifier (cf. Fig.1(b), where the rectifier phase voltages without zero sequence component are defined by $u_{U,i} = u_{U,i} - \frac{1}{3}(u_{U,R} + u_{U,S} + u_{U,T})$ (the total $u_{U,i}$ phase voltages could be measured with reference to, e.g., the capacitive center point M of the output voltage U_0).

Therefore, referring the analysis of the Delta-rectifier to a star equivalent circuit does provide a sound basis for a comparison of the performance of both systems.

Remark: It is interesting to note that for $L = \frac{1}{3} L_\Delta$ (cf. (7)) the input inductors of the Delta-rectifier and of the VIENNA Rectifier in a first approximation show equal volumes (cf. Fig.3) what also does facilitate a direct comparison.

In case, e.g. a toroidal iron power core is employed for the realization the inductors, the number of turns of L_Δ could be higher by a factor of $\sqrt{3}$ for a given admissible maximum magnetic flux density. This is due to the amplitude of the line-to-line currents being lower by a factor of $1/\sqrt{3}$ as compared to the amplitude of the mains phase currents (ripple current neglected).

2.2 Input Voltage Space Vectors

The space vectors of the input phase voltages $u_{U,i}'$

$$u_{U,i}' = \frac{1}{3}(u_{U,R} + u_{U,S} + u_{U,T})$$

resulting for $i_{N,RS} > 0, \ i_{N,ST}, \ i_{N,TR} < 0$ for the different switching state combinations $s=(s_{RS} s_{ST} s_{TR})$ are depicted in Fig.4(a). There, the respective zero sequence components u_0 of the line-to-line input voltages $u_{U,ij}$ (cf. (2)) are shown as indices.

For the suppression of a low-frequency component of the zero sequence current

$$i_0 = \frac{1}{3}(i_{N,RS} + i_{N,ST} + i_{N,TR})$$

being contained in the line-to-line currents $i_{N,ij}$, one has to ensure within each pulse half period $\frac{1}{2}T_P$ and/or within
each switching state sequence (e.g., (100)-(000)-(010)-
(011)) a local average value of \(u_0 \) equal to zero, i.e.,

\[
 u_{0,\text{avg}} = \frac{1}{T_p} \int_0^{T_p} u_0 \, dt = 0 \tag{10}
\]

\((t_p \) denotes a local time running within a pulse period \(T_p \)) by proper partition of the total on-time of the voltage space vector \(u_{(100)} = u_{(011)} \) to the (redundant) switching states \((100)\) and \((011)\) which result in zero-sequence voltages of different signs and amplitudes (for \(s_{g(100)} \) and \(s_{g(011)} \) results in \(u_0 = \pm \frac{1}{3} U_O \), cf.

\(\text{Fig.4: } U_O \) denotes the rectifier DC output voltage, cf. Fig.1(c)).

As a more detailed analysis shows with this the modulation index

\[
 M = \frac{U_o'}{U_o} \tag{11}
\]

\((U_o' \) denotes the amplitude of the fundamental of the equivalent phase voltages \(u_{U,i} \); cf. Fig.2(b)) is limited by

\[
 M_{\text{max}} = \frac{2}{\sqrt{3}} \tag{10}
\]

This identical to the properties of a VIENNA Rectifier of equal output voltage \(U_O \) as can be verified in Fig.4(b).

3 Input Current Control

In analogy to single-phase power factor correction for sinusoidal and/or mains proportional guidance of the input currents of the line-to-line units average current mode control is employed. This does implicitly make sure that for the formation of the line-to-line input voltages \(u_{U,i} \) the redundant switching states are incorporated in the switching state sequence in a way that no low frequency component of the zero sequence voltage \(u_0 \) does occur. A low frequency component of \(u_0 \) would result in a corresponding low-frequency distortion of the line-to-line currents \(i_{b_{ij}} \). This is prevented by the line-to-line current controllers.

As shown in Fig.5 the control of each line-to-line unit does refer to the absolute value of the corresponding line-to-line current which could be gained directly by measurement on the input rectifier DC side. The amplitude of the reference values \(i_{b_{ij}} \) is determined by the output voltage controller of each unit and in dependency on the mains voltage symmetry properties in order to ensure a fundamental mains behavior of the system being equivalent to a star connection of equal resistors. By mains voltage feed-forward \(m_i \) the current control error is limited to low values also for employing a simple P-type current controller \(G(s) \).

![Fig.4: Space vectors of the equivalent input phase voltages \(u_{U,i} \) of the Δ-rectifier for \(i_{b_{Rij}} > 0, i_{b_{STij}} < 0 \) (cf. (a)). Denomination of the space vectors is by the corresponding combination of switching functions \(s_4 = S_{Rij} \cdot S_{STij} \cdot S_{TRij} \) of the power transistors \(S_{Rij}, S_{STij}, S_{TRij} \). There, the zero sequence component \(u_0 \) of the line-to-line input voltages (cf. (2)) occurring for a combination \(s_4 \) is given as index. Furthermore shown: Space vector hexagon of the VIENNA Rectifier for \(i_{b_{Rij}} > 0, i_{b_{Sij}} < 0, i_{b_{TRij}} < 0 \) and equal output voltage \(U_O \) (cf. (b)).](image)

Fig.5: Impression of sinusoidal input currents of the line-to-line units in phase with the corresponding main-line line-to-line voltages, i.e. \(i_{b_{Rij}} \sim u_{U,i} \) , by average current mode control; \(m_i \) denotes the mains voltage feed-forward. Signal paths being equal for all phases are combined in double lines.

The switching of the line-to-line units is coordinated by the switching frequency carrier signals \(i_{D,ij} \) of the current controllers. Aiming for a minimum ripple of the mains phase currents, always voltage space vectors lying in the immediate vicinity of the mains voltage space \(u_{U,i} \) should be employed for the formation of the voltages \(u_{U,i} \) (for neglect of the fundamental voltage drop across the input inductors \(L \)) \(u_{U,i,\text{avg}} = U_O \) is valid, where \(u_{U,i,\text{avg}} \) denotes the space vector to be formed in the average over a pulse period). As a more detailed analysis shows, this can be achieved by inversion of the triangular carrier signal \(i_D \) for each line-to-line current controller in dependency of the sign of the corresponding mains line-to-line voltage \(u_{b_{ij}} \) (cf. Fig.5).

\[
i_{D,ij} = \text{sign}(u_{b_{ij}}) \cdot i_D \tag{13}
\]

and/or in dependency on the sign of the corresponding line-to-line input current reference value \(i_{b_{ij}} \) showing equal phase.

The operation of the units showing positive input currents and of the units showing negative input currents then is in opposite phase; accordingly for \(i_{b_{Rij}} > 0, i_{b_{STij}} < 0, i_{b_{TRij}} < 0 \) the switching state \(s_{g(100)} \) will appear at the beginning and at the end of a pulse period and switching state \(s_{g(011)} \) will be employed in the
vicinity of the center of a pulse period (e.g., a switching state sequence within a pulse period there could be (100)-(000)-(001)-(011)-(001)-(000)-(100), cf. Fig.4). According to (2) and Fig.4 this does result in the formation of a pronounced zero sequence voltage \(u_0 \) within a pulse period (e.g., a switching action of the line-to-line current controllers and can be formulated by a simple analytical calculation in normalized form as

\[
\Delta i_{N,ij} = i_{D,ij} \frac{2}{\sqrt{3}} M \sin (\omega_0 t) (1 - \frac{3}{2^N} M \sin (\omega_0 t))
\]

\(\omega_0 \) denotes the mains angular frequency) where

\[
\Delta i_0 = U_{ij} T_P / 8L
\]

\(\nu_0 \) has been assumed; \(u' \nu_{ij,avg} \) denotes the (local) average value of \(u' \nu_{ij} \) related to a pulse period. Therefore, the coordination of the individual units according to (13) does make sure that a maximum share of the \(\Delta i_{N,ij} \) \(\Delta i_{N,ij} \) shows an envelope which is independent of the coordination concept employed, cf. (14)) does form a zero sequence component circulating inside the delta connection. For the formation of a ripple of the mains phase currents therefore there remains only a small share of \(\Delta i_{N,ij} \), accordingly the phase currents will show a low ripple and/or a largely sinusoidal shape.

The theoretical considerations have been verified by digital simulations (cf. Fig.6(c)). There the following system operating parameters have been assumed:

- Mains line-to-line voltage \(U_{N,ij} = 480V_{\text{ms}} \)
- Output voltage \(U_0 = 800V \)
- Mains current amplitude \(I_{N,ij} = 10A \)
- Mains side inductance \(L_3 = 2.1mH \)
- Switching frequency \(f_r = 25kHz \)
- P-Type current control \(G(s) = 5 \)
- Carrier signal amplitude \(I_p = 10A \)
- Time constant of the controller first order filtering of the input current \(\tau = 100\mu s \)

(for \(\Delta i_0 \) as defined by (15) we therefore have \(\Delta i_0 = 5.71A \)).

The advantage of a coordination of the line-to-line units according to (11) is shown clearly by a comparison to alternative concepts in Fig.6(a). The time behavior of the line-to-line input current ripple components is shown for using identical carriers for all individual line-to-line current controllers

\[
i_{D,ij} = i_D
\]

and in Fig.6(b) for a symmetric phase displacement of the triangular carrier signals of

\[
i_{D,RS} = i_D(t)
\]

\[
i_{D,ST} = i_D(t+\frac{1}{2}T_P)
\]

\[
i_{D,TR} = i_D(t-\frac{1}{2}T_P)
\]

In both cases a significantly lower zero sequence component \(\Delta i_0 \) of the ripple currents \(\Delta i_{N,ij} \) is formed, accordingly there results a higher amplitude of the ripple component \(\Delta i_{N,ij} \) contributing to the ripple \(\Delta i_{N,ij} \) of the mains phase currents \(i_{N,ij} \).

The difference in the performance of the control methods according to (13), (16) and (17) is confirmed for the whole modulation range also by the calculation of
the RMS value of the ripple components (cf. Fig.7). For the normalized (index n) RMS value of \(\Delta i_{N,ij} \) we have for any coordination ((13), (16), or (17)) of the carrier signals \(i_{D,ij} \)

\[
\Delta^2 i_{N,ij,\text{rms},n} = \frac{1}{4} M^2 \left(\frac{1}{2} M^2 - \frac{16}{3} M + \frac{4}{3} \right)
\]

(18)

(valid for \(M=0...1 \), cf. (f) in Fig.7).

As is immediately clear by considering the different spectral composition of the ripple current components \(\Delta i_{N,ij} \) and \(\Delta i_0 \) we have for the RMS values of the ripple components

\[
\Delta^2 i_{N,ij,\text{rms}} = \Delta^2 i_{N,ij,\text{rms},n} + \Delta^2 i_{0,\text{rms}}
\]

(19)

where \(\Delta i_{N,ij,\text{rms}} \) under consideration of the symmetry of the feeding mains and of the symmetry of the rectifier

\[\text{Fig.7: Dependency of the RMS value of the ripple components on the modulation index for control of the line-to-line currents according to (16) (cf. (a)), (17) (cf. (b)) or (13) (cf. (c)). RMS values of the zero sequence ripple components are shown by broken lines; (f): RMS value of the total ripple of a line-to-line current.}\]

\[\text{Fig.8: Reduction of the amplitude of the line-to-line rectifier input currents } i_{N,ij} \text{ and/or of the maximum current stress on the power transistors } S_{ij} \text{ by a factor of } \sqrt{3/2} \approx 0.87 \text{ by a third harmonic } i_{0,(3)} \text{ of amplitude } i_{0,(3)} = \frac{1}{6} i_{N,ij,(1)} \text{ (denotes the maximum current stress on the power transistors).}\]

\[\text{Fig.9: Time behavior of the mains phase voltage } u_{N,R} \text{ of the equivalent input phase voltage } u'_{U,R} \text{ (cf. Fig.2(b)) and of the ripple } \Delta u_{R} \text{ of the mains phase current } i_{N,R} \text{ of the } \Delta \text{-rectifier (cf. (a), (b), and (c), corresponding to system control according to (16), (17) and (13)). Furthermore shown: time behavior of the characteristic quantities for the VIENNA Rectifier (cf. (d)) within a mains period; scales: 200V/div, 2A/div.}\]
distribution of the main part of the spectral power to however, for the VIENNA Rectifier a more even (switching frequency) are pronounced in the spectrum of the amplitude of the third harmonic and of the current
fundamental amplitude of $u_{N,i}$ of the corresponding mains phase voltage $U_0,(3)$. For a relation of the amplitude of the third harmonic and of the current fundamental amplitude of
this does result in a reduction line-to-line current peak value by a factor of $\sqrt{3}/2\approx 0.87$ as compared to the fundamental and in a corresponding reduction of the peak current stress of the power transistors and on the input inductors L_{ij} (for a given number of turns and a maximum admissible magnetic flux density the inductor peak current is determining the magnetic core volume and/or inductor size). Advantageously, the RMS value of the line-to-line currents thereby is only increased marginally, i.e. by a factor of $1.014\cdot\sqrt{3}/2\approx 0.87$ as compared to the purely sinusoidal case (denoted by the index (1)). As more detailed analysis shows this is true also for the average and RMS values of the currents in the power semiconductors.

4 Comparative Evaluation

In Fig.10 the time behavior of the equivalent phase voltage $u_{N,ij}$, of the corresponding mains phase voltage U_0, and of a ripple $\Delta I_{N,ij}$ of the mains phase current $I_{N,ij}$ is shown for the different control concepts of the Δ-rectifier and for the VIENNA Rectifier (for details of the input current control employed for the VIENNA Rectifier see Fig.II.1 in [8]). The average phase current ripple amplitude resulting for the optimum, i.e. minimum mains current ripple control of the Δ-rectifiers (cf. (13)) is about comparable to the performance of the VIENNA rectifier. This is verified in Fig.10 for the whole modulation range for equal rated power of the AC side inductors ($L_Q=5L_r$, cf. (7)), equal switching frequency $f_S=1/T_P$ and equal output voltage U_0 and does give motivation for a further analysis of the system (the analytical calculation of the stresses on the power components will be published in a Part II of this paper).

Concerning a comparison of the Δ-rectifier and of the VIENNA Rectifier also the amplitude spectrum of the input current ripple components is of interest. As shown in Fig.11, harmonics with ordinal numbers $n=500$ (switching frequency) are pronounced in the spectrum of the VIENNA Rectifier show only minor differences, however, for the VIENNA Rectifier a more even distribution of the main part of the spectral power to harmonics with single and double switching frequency is

$$\Delta I_{N,ij} = \sqrt{3} \Delta I_{N,ij}$$

A reduction of $\Delta I_{N,ij}$ by a high zero sequence component $\Delta I_{0,ij}$ therefore directly translates into a higher quality of the mains phase currents (cf. (a),(b) and (c) in Figs.7 and 9).

A zero sequence component of the line-to-line currents does not take influence on the formation of the mains phase currents and therefore constitutes a degree of freedom of the line-to-line current control. As proposed in [7] one therefore could extend the purely sinusoidal shape of the line-to-line current reference values by adding a third harmonic $I_{N,ij}(3)$. For a relation of the amplitude of the third harmonic and of the current fundamental amplitude of

$$I_{N,ij}(3) = \frac{1}{3} I_{N,ij}(1)$$

remains. This does result in an increase of the third harmonic content of the mains phase currents and thereby in a corresponding reduction of the line-to-line current peak value by a factor of $1.014\cdot\sqrt{3}/2\approx 0.87$ as compared to the purely sinusoidal case (denoted by the index (1)). As more detailed analysis shows this is true also for the average and RMS values of the currents in the power semiconductors.

Concerning a comparison of the Δ-rectifier and of the VIENNA Rectifier also the amplitude spectrum of the input current ripple components is of interest. As shown in Fig.11, harmonics with ordinal numbers $n=500$ (switching frequency) are pronounced in the spectrum of the VIENNA Rectifier show only minor differences, however, for the VIENNA Rectifier a more even distribution of the main part of the spectral power to harmonics with single and double switching frequency is

$$\Delta I_{N,ij} = \sqrt{3} \Delta I_{N,ij}$$

A reduction of $\Delta I_{N,ij}$ by a high zero sequence component $\Delta I_{0,ij}$ therefore directly translates into a higher quality of the mains phase currents (cf. (a),(b) and (c) in Figs.7 and 9).

A zero sequence component of the line-to-line currents does not take influence on the formation of the mains phase currents and therefore constitutes a degree of freedom of the line-to-line current control. As proposed in [7] one therefore could extend the purely sinusoidal shape of the line-to-line current reference values by adding a third harmonic $I_{N,ij}(3)$. For a relation of the amplitude of the third harmonic and of the current fundamental amplitude of

$$I_{N,ij}(3) = \frac{1}{3} I_{N,ij}(1)$$

remains. This does result in an increase of the third harmonic content of the mains phase currents and thereby in a corresponding reduction of the line-to-line current peak value by a factor of $1.014\cdot\sqrt{3}/2\approx 0.87$ as compared to the purely sinusoidal case (denoted by the index (1)). As more detailed analysis shows this is true also for the average and RMS values of the currents in the power semiconductors.

Concerning a comparison of the Δ-rectifier and of the VIENNA Rectifier also the amplitude spectrum of the input current ripple components is of interest. As shown in Fig.11, harmonics with ordinal numbers $n=500$ (switching frequency) are pronounced in the spectrum of the VIENNA Rectifier show only minor differences, however, for the VIENNA Rectifier a more even distribution of the main part of the spectral power to harmonics with single and double switching frequency is

$$\Delta I_{N,ij} = \sqrt{3} \Delta I_{N,ij}$$

A reduction of $\Delta I_{N,ij}$ by a high zero sequence component $\Delta I_{0,ij}$ therefore directly translates into a higher quality of the mains phase currents (cf. (a),(b) and (c) in Figs.7 and 9).

A zero sequence component of the line-to-line currents does not take influence on the formation of the mains phase currents and therefore constitutes a degree of freedom of the line-to-line current control. As proposed in [7] one therefore could extend the purely sinusoidal shape of the line-to-line current reference values by adding a third harmonic $I_{N,ij}(3)$. For a relation of the amplitude of the third harmonic and of the current fundamental amplitude of

$$I_{N,ij}(3) = \frac{1}{3} I_{N,ij}(1)$$

remains. This does result in an increase of the third harmonic content of the mains phase currents and thereby in a corresponding reduction of the line-to-line current peak value by a factor of $1.014\cdot\sqrt{3}/2\approx 0.87$ as compared to the purely sinusoidal case (denoted by the index (1)). As more detailed analysis shows this is true also for the average and RMS values of the currents in the power semiconductors.
\(\Delta_{N,j}\), which is mainly due to zero sequence ripple components (cf. \(\Delta_{L,0,0}\) in Fig. 11). The spectra \(\Delta_{S,0,0}\) of the mains phase current ripples of the \(\Delta\)-rectifier and given. As a comparison of the average amplitude of \(\Delta_{S,0,0}\) (cf. Fig.9(d)) and of \(\Delta_{L,0,0}\) (cf. Fig.6(c)) indicates higher core losses of the input inductors will occur for the \(\Delta\)-rectifier. This finally is a consequence of the delta connection of the individual units which does allow the formation of a zero sequence current ripple in contrast to a star connection as given for the VIENNA Rectifier.

5 Conclusions

As this paper shows a delta connection of single-phase boost-type unity power factor rectifiers (\(\Delta\)-rectifier) does provide a low level of harmonics with switching frequency of the mains phase currents comparable to provide a low level of harmonics with switching frequency. This weakness however can be eliminated in case three-level boost converters are employed for realizing the line-to-line units. The resulting system structure is depicted in Fig.12 and is characterized by a very low RMS value of the mains current ripple as has been verified by first digital simulations (cf. (e) in Fig.11). Furthermore, for replacement of the input single-phase diode bridges of the conventional approach by three-phase thyristor bridges a change over of all line-to-line systems to the two phases remaining in the case of a mains phase loss could be performed and/or a high system reliability could be achieved.

![Fig.12: Basic structure of the power circuit of a three-level \(\Delta\)-rectifier.](image)

In the course of the continuation of the research, therefore, the system shown in Fig.12 should be analyzed in detail concerning the stress on the power components, the electromagnetic compatibility and the input current control in case of an unbalance of the mains phase voltages. A compilation of the results of the analysis to be carried out at the ETH Zurich and a comparison to the characteristics of the VIENNA Rectifier will be presented in part II of this paper to be published at the IEEE International Telecommunications Conference 2001.

References

