Google Little-Box Reloaded

Swiss Federal Institute of Technology (ETH) Zurich
Power Electronic Systems Laboratory
www.pes.ee.ethz.ch
Outline

- Google Little Box Challenge
- Requirements
- Little Box 1.0
- Further Analysis & New Approach
- Adv. Measurement Techniques
- New Circuit Topology
- Little Box 2.0
- Conclusions
Google Little Box Challenge

Requirements
Little Box 1.0
Other Finalists
LiTTL E BOX CHALLENGE

- Design / Build the 2kW 1-ΦSolar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

![Diagram showing a circuit with labels for voltage, current, and power density parameters.](image)

- Push the Forefront of New Technologies in R&D of High Power Density Inverters
The Grand Prize

- Highest Power Density (> 50W/in³)
- Highest Level of Innovation

$1,000,000

Timeline
- Challenge Announced in Summer 2014
- 2000+ Teams Registered Worldwide
- 100+ Teams Submitted a Technical Description until July 22, 2015
- 18 Finalists (3 No-Shows)
Selected Converter Topology

- Full-Bridge Output Stage
- Modulation of Both Bridge Legs

- DM Component of u_1 and u_2 Defines Output Voltage u_O
- No Low-Frequency CM Component of u_1 and u_2 (Different to e.g. 1-Φ PFC Rectifier Systems!)
Triangular Current Mode (TCM) ZVS Operation

- TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off

- Requires Only Measurement of Current Zero Crossings, $i = 0$
- High f_s Around $i = 0$ Challenging for Digital Control
- Variable Sw. Freq. f_s Lowers EMI
i=0 Detection

- Saturable Inductor – Toroidal Core: R4 x 2.4 x 1.6, EPCOS (4mm Diameter)
- Core Material: N30, EPCOS

- Operation Tested up to 2.5MHz Switching Frequency
4D-Interleaving

- Interleaving of 2 Bridge Legs per Phase - Volume / Filtering / Efficiency Optimum
- Interleaving in Space & Time – Within Output Period
- Alternate Operation of Bridge Legs @ Low Power
- Overlapping Operation @ High Power

DC-Side Passive Power Pulsation Buffer

- Electrolytic Capacitor

![Diagram of electrolytic capacitor circuit]

\[V_{DC} \quad i_1 \quad i \quad V_{C,\text{max}} \quad \Delta V_C \quad i = I_1 \]

- \(S_0 = 2.0 \text{ kVA} \)
- \(\cos \Phi_0 = 0.7 \)
- \(V_{C,\text{max}} = 450 \text{ V} \)
- \(\Delta V_C / V_{C,\text{max}} = 3\% \)

\[W_{C,\text{max}} \]

- \(C > 2.2 \text{ mF} / 166 \text{ cm}^3 \rightarrow \text{Consumes 1/4 of Allowed Total Allowed Volume!} \)
DC-Side Active Power Pulsation Buffer

- Large Voltage Fluctuation Foil or Ceramic Capacitor
- Buck-Type (Lower Voltage Levels) or Boost-Type DC/DC Interface Converter

$C_k \approx 140 \text{µF}$

$V_{Ck} = 23.7 \text{cm}^3$

- Significantly Lower Overall Volume Compared to Electrolytic Capacitor

$108 \times 1.2 \text{µF} / 400 \text{V}$
DC-Side Active Power Pulsation Buffer

- Cascaded Control Structure

- P-Type Resonant Controller
- Feedforward of Output Power Fluctuation
- Outer Input Current (i_i) / Underlying DC Link Voltage (v_C) Control
Selected Power Semiconductors

- 600V IFX Normally-Off GaN GIT - ThinPAK8x8
- State-of-the-Art Gate Drive

$V_{gs,th} = 1.2V$
$R_{ds,on} = 55 \text{ m}\Omega \ @ 25^\circ C$
$R_{g,int} = 5\Omega$

$- C_s$ Enables High Gate Current for Fast Turn-On
$- R_3$ Discharges C_s During Off-State

Duty Cycle & Frequency Dependent Gate Voltage
High dv/dt-Immunity Gate Drive

- Fixed Negative Turn-Off Gate Voltage - Independent of Sw. Frequency and Duty Cycle
- Extreme dv/dt-Immunity (500 kV/μs) - Due to CM Choke at Signal Isolator Input
- < 30ns Overall Prop. Delay

- Diode ZD₂ Quickly Discharges C_s to $V_{ZD₂}$ at Turn-Off
- Diode ZD₁ Prevents Complete Discharge of C_s During Off-State

- R_4 Ensures Precharge of C_s → Neg. Gate Voltage @ Start-Up
EMI Filter Topology (1)

- Conventional Filter Structure
 - DM Filtering Between the Phases
 - CM Filtering Between Phases and PE

- CM Cap. Limited by Earth Current Limit – Typ. 3.5mA for PFC Rectifiers (GLBC: 5mA, later 50mA !)
- Large CM Inductor Needed – Filter Volume Mainly Defined by CM Inductors
EMI Filter Topology (2)

- Filter Structure with Internal CM Capacitor Feedback
- Filtering to DC- (and Optional to DC+)

- No Limitation of CM Capacitor C_1 Due to Earth Current Limit → μF Instead of nF Can be Employed
- Allows Downsizing of CM Inductor and/or Total Filter Volume
Final Converter Topology

- Interleaving of 2 Bridge Legs per Phase
- Active DC-Side Buck-Type Power Pulsation Buffer
- First Stage AC Filter Caps Connected to DC-
- 2-Stage EMI AC Output Filter

ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)
Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure
High Frequency Inductors (1)

- Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
- Very High Filling Factor / Low High Frequency Losses
- Magnetically Shielded Construction Minimizing EMI
- Intellectual Property of F. Zajc / Fraza

- L = 10.5\(\mu\)H
- 2 x 8 Turns
- 24 x 80\(\mu\)m Airgaps
- Core Material DMR 51 / Hengdian
- 0.61mm Thick Stacked Plates
- 20 \(\mu\)m Copper Foil / 4 in Parallel
- 7 \(\mu\)m Kapton Layer Isolation
- 20m\(\Omega\) Winding Resistance / \(Q \approx 600\)
- Terminals in No-Leakage Flux Area

Dimensions - 14.5 x 14.5 x 22mm\(^3\)
High Frequency Inductors (2)

- High Resonance Frequency → Inductive Behavior up to High Frequencies
- Extremely Low AC-Resistance → Low Conduction Losses up to High Frequencies
- High Quality Factor

Shielding Eliminates HF Current through the Ferrite → Avoids High Core Losses
Shielding Increases the Parasitic Capacitance
High Frequency Inductors (3)

- Comparison of Temp. Increase of a Bulk and a Sliced Ferrite Sample @ 70mT / 800kHz

- Cutting of Ferrite Introduces Mech. Stress
- Significant Increase of the Loss Factor
- Further Treatment Still to be Clarified

* Knowles (1975!)

![Graph showing temperature increase over time for different ferrite samples.]

ETH Zürich

VDE
Thermal Management (1)

- 30°C max. Ambient Temperature
- 60°C max. Allowed Surface and Air Outlet Temperature

Evaluation of Optimum Heatsink Temp. for Thermal Isolation of Converter

Minimum Volume Achieved w/o Thermal Isolation with Heatsink @ max. Allowed Surface Temp.
Thermal Management (2)

- Overall Cooling Performance Defined by Selected Fan Type and Heatsink

 Radial Blower

 Axial Fan

 Square Cross Section of Heatsink for Using a Fan

 Flat and Wide Heatsink for Blower

 ■ Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length

 ■ Cooling Concept with Blower Selected → Higher $CSP\bar{I}$ for Larger Mounting Surface
Thermal Management (3)

- 30mm Blowers with Axial Air Intake / Radial Outlet
- Full Optimization of the Heatsink Parameters
 - 200um Fin Thickness
 - 500um Fin Spacing
 - 3mm Fin Height
 - 10mm Fin Length
 - $\text{CSPI} = 37 \text{ W/(dm}^3\text{.K)}$
 - 1.5mm Baseplate

- $\text{CSPI}_{\text{eff}} = 25 \text{ W/(dm}^3\text{.K)}$ Considering Heat Distribution Elements
- Two-Side Cooling → Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)
Little Box 1.0

- System Employing Active CeraLink™ 1-Φ Power Pulsation Buffer

- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- $f_s = 250$kHz ... 1MHz
- 96.3% Efficiency @ 2kW
- $T_e=58^°\text{C} @ 2kW$

- $\Delta u_{DC} = 1.1\%$
- $\Delta i_{DC} = 2.8\%$
- $THD+N_U = 2.6\%$
- $THD+N_I = 1.9\%$

- Compliant to All “Original” Specifications (!)

- $i_{gnd} < 5$mA (!)
- No Low-Freq. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

ETH Zürich
Little Box 1.0

- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- $f_s = 250kHz ... 1MHz$
- 96.3% Efficiency @ 2kW
- $T_c=58°C @ 2kW$
- $\Delta u_{DC} = 1.1\%$
- $\Delta i_{DC} = 2.8\%$
- $THD+N_U = 2.6\%$
- $THD+N_I = 1.9\%$

- Compliant to All “Original” Specifications (!)
- $i_{gnd} < 5mA (!)$
- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents
Measurement Results (1)

- System Employing Active CeraLink™ 1-Φ Power Pulsation Buffer

- Ohmic Load / 2kW

Compliant to All Specifications
Measurement Results (2)

- System Employing Active CeraLink™ 1-Φ Power Pulsation Buffer

Stationary Operation @ 2kW Output Power
Measurement Results (3)

- System Employing Active CeraLinkTM 1-Ω Power Pulsation Buffer

\[\eta_w = 95.07\% \quad \text{Weighted Efficiency} \]

- Rel. Low Part Load Efficiency \rightarrow Rel. High Output Power Independent Loss Components
Volume & Loss Distribution

- Volume Distribution (240cm³)
 - Power Pulsation Buffer 71.3cm³
 - Inverter Stage 169.1cm³

- Loss Distribution (75W)
 - Power Pulsation Buffer 28.1W
 - Inverter Stage 46.3W

- Large Heatsink (incl. Heat Conduction Layers)
- Large Losses in Power Fluctuation Buffer Capacitor (!)
- TCM Causes Relatively High Conduction & Switching Losses @ Low Power
- Relatively Low Switching Frequency @ High Power – Determines EMI Filter Volume
Finalists - Performance Overview

- 18 Finalists (3 No-Shows)
- 7 Groups of Consultants / 7 Companies / 4 Universities

Note: Numbering of Teams is Arbitrary

(1) Virginia Tech
(2) Schneider Electric
(3) EPRI (Univ. of Tennessee)
(4) Venderbosch
(5) Energy Layer
(6) ETH Zurich
(7) Rompower
(8) Tommasi-Bailly
(9) Red Electric Devils
(10) AHED
(11) FH IISB
(12) Univ. of Illinois
(13) AMR

- 70...300 W/in³
- 35 kHz...500kHz...1 MHz (up to 1MHz: 3 Teams)
- Full-Bridge or DC/AC Buck Converter + Unfolder
- Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
- GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)
Dr. Paul Bleus
Directeur R&D
Red Electric Devils
Olivier Bomboir, Paul Bleus, Fabrice Frebel, Thierry Joannes, Francois Milstein, Pierre Stassain, Christophe Geuzaine, Carl Emmerechts, Philippe Laurent
Red Electric Devils

- No Low-Freq. Common-Mode Output Voltage Comp. → $i_{\text{gnd}} < 5\text{mA}$ (!)
- Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150μF, 200Vpp)

- 2 x Interleaved Bridge Legs for Each Half-Bridge
- DM Inductors (L_1/L_2 and L_4/L_5) and Series Connected CM Inductor (L_7/L_8)
- Single Open-Loop Hall Sensor Output Current Measurement + Observer-Based Current Reconstruction

★ 145 W/in³
Red Electric Devils

- No Low-Frequ. Common-Mode Output Voltage Comp. → $i_{\text{gnd}} < 5\text{mA}$ (!)
- Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150μF, 200Vpp)

145 W/in3

- DSP & CPLD Control
- GaN Systems @ ZVS (35kHz ... 240kHz)
- Shielded Multi-Stage EMI Filter @ DC Input & AC Output
Red Electric Devils

- Variable Phase-Shift of the Half-Bridges (0° or 90°) Dep. on Duty Cycle

- Selection of Opt. Phase Shift & Sw. Frequency for ZVS & Min. Size of Filter Ind. L_{CM} & L_{DM}

$\Phi = 0°$
$d_L = 0.5$
$d_N = 0.5$

$\Phi = 90°$
$d_L = 0.5$
$d_N = 0.5$

145 W/in³
Red Electric Devils

- 3D Sandwich Assembly
- Single Ultra-Thin PCB – Power / Control / Aux.
- Honeycomb Cu-Heatsink & Al Oxide Inductor Cooling
- MMLC Storage Caps Rows Utilized as Heatsink “Fins” (1mm Gaps)

- 145 W/in³
- 95.4 % CEC Efficiency
- \(i_{\text{gnd}} < 5\text{mA} \)
- CSPI = 22.6 W/(dm³.K) - Heatsink & Axial Fan
Red Electric Devils

- 3D Sandwich Assembly
- Single Ultra-Thin PCB – Power / Control / Aux.
- Honeycomb Cu-Heatsink & Al Oxide Inductor Cooling
- MMLC Storage Caps Rows Utilized as Heatsink “Fins” (1mm Gaps)

- 145 W/in\(^3\)
- 95.4 % CEC Efficiency
- \(i_{\text{gnd}} < 5\text{mA} (\dagger)\)
- \(\text{CSPI} = 22.6 \text{ W/(dm}^3\text{.K)}\) - Heatsink & Axial Fan

\(T_c = 51°C\)
Google Little Box Challenge Top 3 Finalist

Miao-xin Wang, Rajesh Ghosh, Srikanth Mudiyula, Radoslava Mitova, David Reilly, Milind Dighrasker, Sajeesh Sulaiman, Alain Dentella, Damir Klikić, Michael Hartmann
Global Team

- High Efficiency & Robustness Preferred
- PWM of Both Legs of Output Full-Bridge
- DC-Side Series (!) Active Power Puls. Filter

→ Larger Size
→ No Low. Frequ. CM Output Voltage Comp.
→ Compensates 120Hz DC Link Volt. Variation

- $C_{DC} = 400\mu F / 450V$
- 1/5 Volume Comp. to only Bulk Capacitors
- $V_{dcinput}$ Ripple <10% (<30Vpp) @ Full Load
- Nanocrystalline CM Choke
- DC-Side & AC-Side EMI/RF Filter
- $Q_{5...8} – T0247$ SiC MOSFETs, 45kHz of Both Legs

100 W/in^3
- High Efficiency & Robustness Preferred → Larger Size
- PWM of Both Legs of Output Full-Bridge → No Low. Freq. CM Output Voltage Comp.
- DC-Side Series (!) Active Power Puls. Filter → Compensates 120Hz DC Link Volt. Variation

- $C_{DC,RF} = 2 \times 1500\mu F / 25V, U_{DC,RF} = 15V$
- Only 52VA Processed Ripple Filter Power @ Rated Output (!)
- $Q_1/Q_2 \& Q_3/Q_4 - R_{ds,on} = 2.2m\Omega$ MOSFETs (40V, 100A), w/o Heatsink, $f_S = 130kHz$ of Both Legs
- TI Piccolo DSP Control of Entire System / Open Loop Control of 120Hz Comp. Filter

ETH zürich
Optimization of Little-Box 1.0

Adv. Modulation / Circuit Concepts
Measurement of Buffer Cap. Performance
Measurement of GaN ZVS & On-State Losses
Measurement of Multi-Airgap Core Losses
ηρ-Pareto Optimization
Eff. Optimal f_S-Modulation

- TCM \rightarrow ZVS but Large Current Ripple & Wide Frequency Variation
- PWM \rightarrow Const. Sw. Frequency but Hard Sw. @ Current Maximum

- Opt. Combination of TCM & PWM \rightarrow Optim. Variation of Local Sw. Frequ. Over Output Period
- Exp. Determination of Loss-Opt. Local Sw. Frequency f_{OFM} Considering DC/DC Conv. Stage

Loss-Optimal Local Sw. Frequ. f_{OFM} for Given V_{DC} & Local i_o & v_{CO}

DC/AC Properties Calculated Assuming Local DC/DC Operation
Eff. Optimal f_S-Modulation

- **TCM** → ZVS but Large Current Ripple & Wide Frequency Variation
- **PWM** → Const. Sw. Frequency but Hard Sw. @ Current Maximum

- Opt. Combination of TCM & PWM → Optim. Frequ. Variation Over Output Period
- Exp. Determination of Loss-Opt. Sw. Frequency f_{OFM} Considering DC/DC Conv. Stage

- **DC/AC Properties Calculated Assuming Local DC/DC Operation**
- **Loss-Optimal Local Sw. Frequ. f_{OFM} for Given V_{DC} & Local i_0 & v_{CO}**
Eff. Optimal f_s-Modulation

- Resulting Time-Dependency of Optimal Sw. Frequ. & Power Loss
- Comparison with 140 kHz Const. Sw. Frequency PWM

- Higher Average Switching Frequency f_s @ Light Loads
- Reduction of f_s @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS
Eff. Optimal f_s-Modulation

- Optimal Inductor Current Envelope for Diff. Output Power Levels

- Higher Average Switching Frequency f_s @ Light Loads
- Reduction of f_s @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS
iTCM Inverter Topology

- TCM → Challenging Inductor Design → HF & LF Currents
- iTCM → Add. LC-Circuit / Separation of LF & HF Currents → \(L >> L_B \) (P. Jain, 2015)

- TCM

- iTCM

- iTCM:
 - Low Output Curr. Ripple / Noise
 - Variable \(f_s \) PWM Applicable, No \(i=0 \) Detect.
 - Dedicated LF and HF Inductor Designs Possible
 - Reduced Filtering Effort
 - Simple Control Strategy (DSP)
 - Improved Conv. Efficiency
Measurements

Buffer Capacitor Losses / Cap.
Power Semicond. ZVS & On-State Losses
Ferrite Multi-Airgap Core Losses
CeraLink™ vs. X6S (1)

- Electrolytic Capacitors → Limited by Lifetime Current Limit
- X6S MLCC, 2.2 μF, 450 V Class II → Highest Energy Density but Low Cap. @ High DC Bias
- CeraLink™, 1 μF / 2 μF, 650 V → PLZT Ceramic, High Cap. @ High DC Bias
- CeraLink™ Allows Op. @ 125°C → Very Low ESR @ High Frequencies

PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points
CeraLink™ vs. X6S (2)

- **Electrolytic Capacitors**
 Limited by Lifetime Current Limit
- **X6S MLCC, 2.2 μF, 450 V Class II**
 Highest Energy Density but Low Cap. @ High DC Bias
- **CeraLink™, 1 μF / 2 μF, 650 V**
 PLZT Ceramic, High Cap. @ High DC Bias
- **CeraLink™ Allows Op. @ 125°C**
 Very Low ESR @ High Frequencies

Experimental Setup for Generation of DC Bias & Superimposed AC Voltage
CeraLink™ vs. X6S (3)

- **CeraLink™**
 - Large-Signal 120Hz Excitation Reveals Large Hysteresis
 - Significantly Higher Losses @ 120Hz Comp. to X6S MLCC
 - ESR Drops Significantly @ Higher Temp.
 - 36μF (27μF) Blocks of Prepackaged Single Chips
 - Reliable Mech. Construction

- **X6S MMLC**
 - Only Available as Single Chips
 - Complicated Packaging

Graphs and Diagrams

1. **Graph 1:**
 - ΔQ (mA) vs. Capacitor Voltage (V)
 - CeraLink vs. X6S
 - Temperatures: 100 V DC, 350 V DC
 - Top = 60°C

2. **Graph 2:**
 - ESR (%) vs. Temperature (°C)
 - CeraLink

3. **Graph 3:**
 - Power Loss (Watt) vs. V_ac_pp (V)
 - CeraLink
 - Measurements: 275 V DC, 0 V DC
 - Top = 60°C
CeraLink™ vs. X6S (4)

- Variation of DC Bias and Superimposed AC Voltage @ 60°C Operating Temp.
- Designed Op. Point

- PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points
Measurement of GaN ZVS & On-State Losses
Analysis of GaN Power Transistor ZVS Losses

- Little-Box 1.0 Experiments Indicated *Residual ZVS Losses of GaN Power Transistors*
- Losses Cannot be Explained by Remaining i_D, u_{DS} Overlap / Non-Ideal Gate Drive etc.

- Potentially Large Measurement Error for Electric Double-Pulse Sw. Loss Measurement
- Accuracy only Guaranteed by Direct Loss Measurement \rightarrow Calorimetric Approach
Analysis of GaN Power Transistor ZVS Losses

- Little-Box 1.0 Experiments Indicated *Residual ZVS Losses* of GaN Power Transistors
- Losses Cannot be Explained by Remaining i_D, u_{DS} Overlap / Non-Ideal Gate Drive

- Potentially Large Measurement Error for Electrical Double-Pulse Sw. Loss Measurement
- Accuracy only Guaranteed by Direct Loss Measurement → *Calorimetric Approach*
Calorimetric Measurement of ZVS Losses

- "Inductor in the Box" → Accurate DC Inp. & Outp. Power Measurement, Subtr. of Ind. Losses
- "Bridge Leg in the Box" → Direct Measurement of the Sum of Cond. & Sw. Losses

- Half Bridge on IMS Board
- Alu-Block as Heat Sink

- "Bridge Leg in the Box" & Fast Measurement by $C_{th} \frac{\Delta T}{\Delta t}$ Evaluation
- DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses
- Subtraction of the Cond. Losses from Datasheet or Dir. Measurement
Calorimetric Measurement of ZVS Losses

- “Bridge Leg in the Box” & Fast Measurement by $C_{th} \cdot \Delta T/\Delta t$ Evaluation
- Subtraction of the Cond. Losses from Datasheet or Direct Measurement
- DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses

- Isolated Temp. Measurement with Optical Fiber (GaAs Crystal) Instead of Thermocouple
- Calibration by On-State of T_1 and T_2 & DC Current Operation / DC Power Loss Measurement
Calibration of “Bridge Leg in the Box” Setup

- **Calibration** by On-State of T_1 and T_2 & DC Current Operation / DC Power Loss Measurement
- **Identification of** Thermal Cap. C_{th} and Thermal Resistance R_{th}

- DC Power Loss Measurement Ensures High Accuracy
- Thermal Behavior for Short Measurement Times Mainly Determined by C_{th}
Accurate On-State Voltage Measurement

- Clamping Diode for Limiting the On-State Voltage Measurement (OVM) Range to a Few Volts
- Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy (2mV)

- Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic $R_{DS,\text{on}}$ Measurement
Accurate On-State Voltage Measurement

- Clamping Diode for Limiting the On-State Voltage Measurement (OVM) to 2V
- Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy (2mV)

Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic $R_{DS,on}$ Measurement
ZVS Loss Measurement Results (1)

- Measurement of Energy Loss per Switch and Switching Period
- GaN Enhancement Mode Power Transistor (600V, 70mΩ @ 25°C)
- Antiparallel CREE SiC Schottky Freewheeling Diode (600V, 3.3A)

Switching Energy, $E_{ON} + E_{OFF}$

- Half Bridge
- $C_{ext} = 100\text{pF}$
- $V_{DC} = 100\text{V}$
- $V_{DC} = 200\text{V}$
- $V_{DC} = 300\text{V}$
- $V_{DC} = 400\text{V}$

- Switching w/ and w/o 100pF Parallel Low-Loss SMD Multilayer Ceramic Chip Capacitor (450V)
- dv/dt Measured in 10%...90% of Turn-off Voltage, Behavior @ at Low dv/dt Still to be Clarified
ZVS Loss Measurement Results (2)

- Analysis of a Permanently-Off Half-Bridge Excited with Switch Node Voltage
- Measurement of Energy Loss per Switch and Switching Period

Heating Indicates Losses in the Permanently-Off Devices
- Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt
ZVS Loss Measurement Results (2)

- Analysis of a Permanently-Off Half-Bridge Excited with Switch Node Voltage
- Measurement of Energy Loss per Switch and Switching Period

- Heating Indicates Losses in the Permanently-Off Devices
- Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt
Measurement of Ferrite Multi-Airgap Core "Mystery" Losses
Multi-Airgap Inductor

- Ferrite E-Core with 50 x 0.3mm Thick Stacked Plates as Center Post
- Power Loss of TCM Inductors Significantly Higher than Expected

Analysis by Fraunhofer IZM Shows Up to Factor 10 High Core Losses (!) → “Mystery” Losses
- Machining Increases Core Losses

- 1964 - E. Stern & D. Temme → Machining / Compressive Stress Changes BH-Loop of NiZn Ferrite

- 1974 - J. Knowles, E. Snelling → Compressive Stress Incr. Loss Fact., Reduces μ,

- 1984 - E. Klokholm & H. Wolfe → 40 μm Magn. Dead Surface Layer of MnZn Ferrite

- 1987 - S. Chandrasekar et al. → Lapping Causes Greater Residual Stress than Grinding
Ferrite Machining Process

- Cutting of Thin Plates from Ferrite Rod with Diamond Saw
- Abrasive Machining Introduces Mech. Stress into Surface

Diamond Blade 5000rpm

Machined Core

SEM Image of Machined MnZn Ferrite (3F4)

Ferrite Properties in Surface Altered → Increase of Loss Factor
Subsurface Condition of Machined Ferrite

- Focused Ion Beam (FIB) Cut into Ferrite (3F4) Sample & Scanning Electron Microscopy (SEM)
- Polishing of Surface with Grain Sizes 2400 SiC → 4000 SiC → Colloidal Silica SiO₂

- Polishing Removes 500μm of Surface → Bulk Material Exposed
- Bulk Ferrite also Exhibits Cavities → Result of (Imperfect) Sintering Process
Thermometric Surface Loss Measurement

- Cap. Series Comp. for Lowering Impedance @ High Frequencies
- Measurement of Transient Temp. Change \rightarrow Calcul. of Losses

- Temperature Rise of $\Delta T = 1.5^\circ \ldots 5^\circ$C Sufficient (Accuracy $\pm 0.2^\circ$C), Fast Measurement (!)
Test Fixture / Magnetic Circuit

- **E-Type Fixture** for Swift Installation of Diff. Samples (7mm x 6.4mm x 21.6mm)
- **FEM Optimiz. of Dimensions** – Large Core Cross Section / Tapered Outer Limbs

- Therm. Insul. & Airgap Lattice Ensure Low Heat Flux to Ambient
- Measurement of Temp. Increase Over Time Allows to Verify Homog. Flux Density in Sample
Identification of Therm. Parameters R_{th}, C_{th}

- DC Current Impressed in Ferrite, Voltage Control for Const. Power Dissipation as $R_{DC}=R_{DC}(Temp.)$
- Temperature Response of Sample Recorded *(FLIR A655sc W with Close-Up Lens)*
- Emissivity of Ferrite Determined Using Ferrite on Heating Plate ($\varepsilon = 0.86$)

$R_{th} = 37.8 \text{ K/W Can be Neglected}$

$C_{th} = 3.83 \text{J/K Close to } C_{th} \text{ Calc. Based on Vendor Data } (C_{th} = 3.6\text{J/K})$
Surface Loss Measurement Principle

- Hypothesis: Core Loss Density in Surface Layer Higher than in Bulk
- Thinner Plates \Rightarrow Higher Average Losses / Faster Temp. Rise
- Stacking of Plates Does NOT Affect Temperature Rise (!)

Surface Loss Density can be directly calculated from material parameters, geometry, and Δt_A and Δt_B.
Temperature Rise Recording

- Comparison of Solid 3F4 Sample (1 x 21.6mm) and Stacked Plates Sample (7 x 3mm)
- Sinusoidal Excitation 100mT / 400kHz

Thermal Image shown 25 Seconds After Turn-On of Magnetic Excitation
Measurement Results – *Bulk Losses*

- Comparison of Measurement Results and Datasheet Values, 3F4 @ 25°C
- Measurement Error Approx. ±10% (Worst Case)

![Graphs showing loss density vs. peak flux density and frequency](image)

- Good Agreement with *Datasheet Values* / Vendor Steinmetz Parameters
Measurement Results – Surface Losses

- Measurement Error Approx. ±25% (Worst Case)
- Error Determined by Meas. Time & Temp. Reading Accuracy

\[p_{\text{Surf}} = 0.0615 \times \left(\frac{f}{1 \text{Hz}} \right)^{1.13} \times \left(\frac{B}{1 \text{T}} \right)^{3.47} \left(\text{mW/cm}^2 \right) \]

- Comp. of Steinmetz Parameters of Surface Losses & Bulk Losses \(\beta_s > \beta, \alpha_s < \alpha \)
"Critical Thickness" of Ferrite Plates

- "Critical Thickness" Reached for Equal Losses in Bulk & Surface
- Critical Plate Thickness is INDEPENDENT of Cross Section (!)

3F4 Critical Thickness for 125mT / 400kHz

- Dependence on Flux Density Ampl. & Frequency !
- Dependence on Material / Machining Process / Power Processing Treatment
Optimization of Little-Box 1.0

- η-Pareto Front
- TCM vs. Large Ripple PMW
- The Ideal Switch is Not Enough (!)
- Design Space Diversity
Multi-Objective Optimization

- Detailed System Models → Power Buffer/Output Stage/EMI Filter
- Multi-Domain Component Models → Passives & GaN & SiC Semicond.
- Consideration of Very Large # of Degrees of Freedom

- Pareto Optimization Shows Trade-Off Between Power Density and Efficiency
Little Box 1.0 $\eta \rho$-Performance Limits

- Multi-Objective Optimization of Little-Box 1.0 (incl. CeraLink™ → X6S)
- Absolute Performance Limits (I) - DSP/FPGA Power Consumption
 (II) - Heatsink Volume @ $(1-\eta)$

Further Performance Improvement for Triangular Current Mode (TCM) → PWM
Little Box 1.0 -- Electrolytic Cap. / Active PPB

- Analysis for Google Little Box Challenge Specification $\Delta V/V < 3\%$
- Efficiency Benefit of PPB only for $\rho > 9\text{kW/dm}^3$

- Electrol. Cap. Favorable for High Efficiency @ Moderate Power Density ($\Delta\eta = +0.5\%$)
- Electrol. Cap. Show Lower Vol. & Lower Losses if Large $\Delta V/V$ is Acceptable (e.g. for PFC Rectifiers)
Little Box 1.0 -- TCM → PWM

- Very High Sw. Frequency f_s of TCM Around Current Zero Crossings
- Efficiency Reduction due to Residual TCM Sw. Losses & Gate Drive Losses Reduction
- Wide f_s -Variation Represents Adv. & Disadvantage for EMI Filter Design

\[i(t) \]

\[T_+ \quad C_{\text{ext}} \quad C_{\text{om}} \quad T_- \quad C_{\text{ext}} \quad v_T \quad +v_o \]

- PWM -- Const. Sw. Frequency & Lower Conduction Losses
- PWM @ Large Current Rippel -- ZVS in Wide Intervals

\(\text{(s)} \) Soft-Switching (ZVS)
\(\text{(p-h)} \) Partial Hard Switching
\(\text{(h)} \) Hard-Switching

\(i_L \approx i_o \)
Little Box 1.0 -- TCM → PWM

- Optimization for GaN GIT & No Interleaving
- Resulting Opt. Inductance of Output Inductor $L=10\mu H$ (TCM), $L=30\mu H$ (PWM@140 kHz)

PWM vs. TCM → Slightly Higher Max. Power Density @ Same Efficiency

- $\rho=11.9\,\text{kW/dm}^3$, $\eta=97.4\%$
- $\rho=12.5\,\text{kW/dm}^3$, $\eta=97.4\%$
The Ideal Switch is Not Enough (!)
Little Box 1.0 @ Ideal Switches -- TCM

- Multi-Objective Optimization of Little-Box 1.0 (X6S Power Pulsation Buffer)
- Step-by-Step Idealization of the Power Transistors
- Ideal Switches: $k_c = 0$ (Zero Cond. Losses); $k_s = 0$ (Zero Sw. Losses)

Zero Output Cap. and Zero Gate Drive Losses

Analysis of Improvement of Efficiency @ Given Power Density & Maximum Power Density
Little Box 1.0 @ Ideal Switches -- PWM

- Multi-Objective Optimization of Little-Box 1.0 (X6S Power Pulsation Buffer)
- Step-by-Step Idealization of the Power Transistors
- Ideal Switches: $k_c = 0$ (Zero Cond. Losses); $k_s = 0$ (Zero Sw. Losses)

Analysis of Improvement of Efficiency @ Given Power Density & Maximum Power Density
Little Box 1.0 @ Ideal Switches -- PWM

- $\rho = 6\text{kW/dm}^3$
- $\eta \approx 99.35\%$
- $L = 50\mu\text{H}$
- $f_s = 500\text{kHz}$ or 900kHz

- L & f_s are Independent Variables (Dependent for TCM)
- Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions)
Little Box 2.0

DC/AC Converter + Unfolder
PWM vs. TCM incl. Interleaving
ηp-Pareto Limits for Non-Ideal Switches
3D-CAD Construction
Exp. Results

250 W/in3
Little Box 2.0 -- New Converter Topology (1)

- Alternative Converter Topology ➔ Only Single High Freq. Bridge Leg + 60Hz-Unfolder
- HF Half-Bridge & Half-Bridge Unfolder DC/AC OR Buck Converter + Full-Bridge Unfolder

- v_{AC1}, v_{AC2} More Diff. to Gen. but Add. DOF
- Higher Sw. Losses & Gate Drive Losses
- Zero Low-Freq. CM-Noise (DC Comp. Only)
- C_{CM} Not Limited by Allowed Gnd Current

- v_{AC1} More Difficult to Generate/Control
- Lower Sw. Losses & Gate Drive Losses
- Higher CM-Noise (DC and $n \times 120Hz$-Comp.)
- $C_{CM}=150nF$ Allowed for 50mA Gnd Current
Little Box 2.0 -- New Converter Topology (2)

- **Alternative Converter Topology** → Only Single High Frequ. Bridge Leg + 60Hz-Unfolder
- **HF Half-Bridge & Half-Bridge Unfolder DC/AC** OR **Buck Converter + Full-Bridge Unfolder**

- v_C^0 Easy to Generate/Control
- Higher Cond. Losses Due to FB-Unfolder
- Lower CM-Noise (DC & n x 120Hz-Comp.)
- $C_{CM} = 700\text{nF}$ Allowed for 50mA Gnd Current

- v_{AC1} More Difficult to Generate/Control
- Lower Sw. Losses & Gate Drive Losses
- Higher CM-Noise (DC and n x 120Hz-Comp.)
- $C_{CM} = 150\text{nF}$ Allowed for 50mA Gnd Current
Little Box 2.0 -- New Converter Topology (3)

- Alternative Converter Topology - DC/AC - Buck Converter + Unfolder
- 60Hz-Unfolder (Temporary PWM for Ensuring Cont. Current Control)
- TCM or PWM of DC/AC - Buck-Converter

Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer
Little Box 2.0 -- Multi-Objective Optimization

- DC/AC - Buck Converter (Single PWM Bridge Leg) + Unfolder Shows Best Performance
- Full-Bridge Would Employ 2 Switching Bridge Legs - Larger Volume & Losses
- Interleaving Not Advantageous – Lower Heatsink Vol. / Larger Vol. of Switches and Inductors

\[\rho = 250 \text{W/in}^3 \ (15 \text{kW/dm}^3) \] @ \(\eta = 98\% \) Efficiency Achievable for Full Optimization
3D-CAD Construction of the Final System

250 W/in³
Little Box 2.0 -- Mechanical Construction (1)

- 60 mm x 50 mm x 45 mm = 135 cm³ (8.2in³) → 14.8 kW/dm³ (243 W/in³)
Little Box 2.0 -- Mechanical Construction (2)

- Output Filter
- PPB Capacitor
- Heat Sink + Fans

- 60 mm x 50 mm x 45 mm = 135 cm³ (8.2 in³) \rightarrow 14.8 kW/dm³ (243 W/in³)
Little Box 2.0 -- Mechanical Construction (3)

- Inductors (Buck-Stage & Unfolder)
- Output Filter
- Heat Sink + Fans
- PPB Capacitor

- 60 mm x 50 mm x 45 mm = 135 cm³ (8.2in³) → 14.8 kW/dm³ (243 W/in³)
Little Box 2.0 -- Mechanical Construction (4)

- Power Board
- Inductors (Buck-Stage & Unfolder)
- Output Filter
- Heat Sink + Fans
- PPB Capacitor

- 60 mm x 50 mm x 45 mm = 135 cm³ (8.2 in³) → 14.8 kW/dm³ (243 W/in³)
Little Box 2.0 -- Mechanical Construction (5)

- Control Board
- Power Board
- Inductors (Buck-Stage & Unfolder)
- Output Filter
- Heat Sink + Fans
- PPB Capacitor

- $60 \text{ mm} \times 50 \text{ mm} \times 45 \text{ mm} = 135 \text{ cm}^3 (8.2\text{ in}^3) \rightarrow 14.8 \text{ kW/dm}^3 (243 \text{ W/in}^3)$
Little Box 2.0 -- Demonstrator

- Control Board
- Power Board
- Heat Sink + Fans
- Inductors (Buck-Stage & Unfolder)
- Output Filter
- PPB Capacitor

- 60 mm x 50 mm x 45 mm = 135 cm³ (8.2 in³) → 14.8 kW/dm³ (243 W/in³)
Little Box 2.0 -- Demonstrator

- **PPB Capacitor**
- **Heat Sink + Fans**
- **Inductors (Buck-Stage & Unfolder)**
- **Power Board**
- **Control Board**

![Image of the Little Box 2.0 Demonstrator]

- 60 mm x 50 mm x 45 mm = 135 cm³ (8.2 in³) → 14.8 kW/dm³ (243 W/in³)

ETH Zürich
Experimental Results

Control Block Diagram
Output Voltage / Input Current Quality
Efficiency
Each Stage (Buck & Unfolder) Controlled with Cascaded Current and Voltage Loop

Without Switching of Unfolder Control Like for Conventional Boost PFC Rectifier
Little Box 2.0 – Experimental Results (1)

- Voltage Zero Crossing Behavior - With (Right) & Without (Left) Switching of Unfolder

- Output Voltage & Current Fully Controlled Around Voltage Zero Crossings
Little Box 2.0 – Experimental Results (2)

- DC/|AC| Buck-Stage Output Voltage & Inductor Current

- Resistive Load
- Inductive Load
- Capacitive Load
Little Box 2.0 – Experimental Results (3)

- Performance of First DC/AC - Buck Converter + Unfolder Prototype
- PWM Operation
- Without Power Pulsation Buffer

98% for Res. Load Achievable if Cond. Losses of PCB (Copper Cross Sect.) & Unfolder ($R_{ds,on}$) are Red.
Litte Box 2.0 – Performance Comparison

- 18 Finalists (3 No-Shows)
- 7 Groups of Consultants / 7 Companies / 4 Universities

Note: Numbering of Teams is Arbitrary

- 70...300 W/in³
- 35 kHz...500kHz...1 MHz (up to 1MHz: 3 Teams)
- Full-Bridge or DC/AC Buck Converter + Unfolder
- Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
- GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Virginia Tech</td>
</tr>
<tr>
<td>2</td>
<td>Schneider Electric</td>
</tr>
<tr>
<td>3</td>
<td>EPRI (Univ. of Tennessee)</td>
</tr>
<tr>
<td>4</td>
<td>Venderbosch</td>
</tr>
<tr>
<td>5</td>
<td>Energy Layer</td>
</tr>
<tr>
<td>6</td>
<td>ETH Zurich</td>
</tr>
<tr>
<td>7</td>
<td>Rompower</td>
</tr>
<tr>
<td>8</td>
<td>Tommasi-Bailly</td>
</tr>
<tr>
<td>9</td>
<td>Red Electric Devils</td>
</tr>
<tr>
<td>10</td>
<td>AHED</td>
</tr>
<tr>
<td>11</td>
<td>FH IISB</td>
</tr>
<tr>
<td>12</td>
<td>Univ. of Illinois</td>
</tr>
<tr>
<td>13</td>
<td>AMR</td>
</tr>
</tbody>
</table>

Litte Box 2.0 – Performance Comparison

- @ Rated Power
Overall Summary

Source: whiskeybehavior.info
Performance Limits / Future Requirements

- 220...250W/in³ for Two-Level Bridge Leg + Unfolder
- 250...300W/in³ for Highly Integrated Multi-Level Approach
- Isol. Distance Requirements Difficult to Fulfill
- Fulfilling Industrial Inp. Overvoltage Requirem. would Signific. Reduce Power Density

- Low Frequency (20kHz...120kHz) SiC vs. HF (200kHz...1.2MHz) GaN
- Multi-Cell Concepts for LV Si (or GaN) vs. Two-Level SiC (or GaN)

- New Integr. Control Circuits and \(i=0\) Detection for Sw. Frequency >1MHz
- Integrated Gate Drivers & Switching Cells
- High Frequency Low Loss Magnetic Materials
- High Bandwidth Low-Volume Current Sensors
- Low Loss Ceramic Capacitors Tolerating Large AC Ripple
- Passives w. Integr. Heat Management and Sensors
- 3D Packaging

- New U-I-Probes Required for Ultra-Compact Conv. R&D
- Specific Systems for Testing \(\rightarrow\) Devices Equipped with Integr. Measurement Functions
- Convergence of Sim. & Measurem. Tools \(\rightarrow\) Next Gen. Oscilloscope
- New Multi-Obj. Multi-Domain Simulation/Optim. Tools
Thank You!
Questions
Future Development 1/2

- Commoditization / Standardization
- Extreme Cost Pressure (!)

“There is Plenty of Room at the Top” → Medium Voltage/Frequency Solid-State Transformers

100 kW

10 W

Standard / Integrated Solutions

System Applications

Cost

Power-Supplies on Chip ← “There is Plenty of Room at the Bottom”

Key Importance of Technology Partnerships of Academia & Industry
Future Development 2/2

- Extrapolation of Technology S-Curve

“Passives”
- Adv. Packaging
- η-ρ-σ-Design of Converters & “Systems”
- Measurement Technologies

- Super-Junct. Techn. / WBG
- Digital Power Modeling & Simulation
- Power MOSFETs & IGBTs
- Microelectronics
- Circuit Topologies
- Modulation Concepts
- Control Concepts

η-ρ-σ-
- Design of Converters & “Systems”
- Measurement Technologies

![Paradigm Shift]

Emerging Technology
Established
Mature

Relevant Technologies
- SCR / Diodes
- Solid-State Devices
- Power MOSFETs & IGBTs
- Microelectronics
- Circuit Topologies
- Modulation Concepts
- Control Concepts

Performance

Effort / Time

2015

2025

Extrapolation of Technology S-Curve
Advanced Packaging (!)

Moore's Law

■ WBG Semiconductor Technology ➔ Higher Efficiency, Lower Complexity
■ Microelectronics ➔ More Computing Power

Technology Progress – **Technology Push**

- **WBG Semiconductor Technology** ➔ Higher Efficiency, Lower Complexity
- **Microelectronics** ➔ More Computing Power

→ + Advanced Packaging (!)

→ Moore's Law
System / Smart Grid Drivers

- Metcalfe's Law

- Moving from Hub-Based Concept to Community Concept Increases Potential Network Value Exponentially ($\sim n(n-1)$ or $\sim n \log(n)$)
Technology Sensitivity Analysis Based on η-ρ-Pareto Front

- Sensitivity to Technology Advancements
- Trade-off Analysis
Converter Performance Evaluation Based on η-ρ-σ-Pareto Surface

σ: kW/$
Converter Performance Evaluation Based on η-ρ-σ-Pareto Surface

‘Technology Node’

Technology Node: $(\sigma^*, \eta^*, \rho^*, f_P^*)$
Future Development

“Devices”
- Minimize / Avoid Packages → (PCB) Embedding
- Integrate Driver Stage
- Integrate Sensors / Monitoring
- Multiple Use of Isolated Gate Drive Communication Channel
- Offer Test Devices with Integrated Measurement Function
- Facilitate (Double Sided) Heat Extraction

Converters
- Standardized Very Low Cost Building Blocks
- “Application Specific” = Wide Operating Range Standardized Blocks
- Self-Parametrization
- Bidirectional Converters

Systems
- AC and DC Distribution
- Single Converter vs. Combination of Modules / Cells
- Initial Costs / Life Cycle Cost Trade-off
- Grid 4.0

Design
- Minimize Design Time / Fully Computerized
- Maximize Design Flexibility for Appl. Specific Solution (PCB)
- Maximize Design Insight for Trade-off Analysis
- Design for Manufacturing (Planar / PCB Based)

Literature
- More & More “White Noise”