Novel bearingless motor concept with 26 poles and 24 slots

F. Zürcher, T. Nussbaumer*, W. Gruber**, and J. W. Kolar

*Levitronix GmbH
Technoparkstrasse 1
Zurich, Switzerland

**ACCM GmbH
Johannes Kepler University Linz
Linz, Austria
Motivation and applications of bearingless slice motors

Properties of bearingless slice motors

- Ultra compact setup
- Passive axial and tilting bearing
- Active radial bearing and PMSM
- Large air-gap possible
- High torque

Application

- Hermetically encapsulated rotor in process chamber
- For biotechnology, pharma and semiconductor industry
Basic principle: passive axial and tilting PM bearing
Basic principle: passive axial and tilting PM bearing

- **Motivation**
 - Basic principle: passive bearing
 - Basic principle: active bearing and drive

Basic principle: passive axial and tilting PM bearing

- **Introduction**
 - Winding configurations
 - Parameter optimization
 - Conclusion and verification

Diagram

- **Stator iron**
- **Rotor**
- **Permanent magnets** (NdFeB)

- **Equations**
 - F_z
 - F_r
 - ω
 - $T_{x,y}$

3 GG-02 Novel bearingless motor with 26 poles and 24 slots
Basic principle: passive axial and tilting PM bearing

\[\omega \]

\[F_{z} \]

\[F_{r} \]

\[F_{\text{stator iron}} \]

\[F_{\text{rotor}} \]

\[F_{\text{permanent magnets}} \]

\[\omega_{\text{stator iron}} \]

\[\omega_{\text{rotor}} \]
Basic principle: passive axial and tilting PM bearing
Basic principle: passive axial and tilting PM bearing

\[F_z \quad F_z \quad F_r \quad F_r \quad F \quad F \quad \omega \quad \omega \quad F_z \quad F_z \quad F_r \quad F_r \]
Basic principle: passive axial and tilting PM bearing

- **Motivation**
 - Basic principle: passive bearing
 - Basic principle: active bearing and drive

Basic principle:

- Passive axial and tilting PM bearing

- **Parameters:**
 - F_z
 - F_r
 - $F_{x,y}$
 - ω

Diagram:

- Schematic of the bearingless motor with 26 poles and 24 slots.
Basic principle: passive axial and tilting PM bearing
Basic principle: passive axial and tilting PM bearing

\[
\begin{align*}
E & \quad F_z \\
F_r & \quad F_z \\
F_r & \quad F_r \\
\omega & \quad T_{x,y}
\end{align*}
\]
Basic principle: passive axial and tilting PM bearing
Basic principle: active radial bearing and motor drive

Principle

- **Active radial magnetic bearing** for Δx and Δy
- **Permanent magnet synchronous motor (PMSM)**
 - **Stator** with bearing and drive windings...
 - ...and position and angular sensors
 - **Rotor** with permanent magnets and back iron
Basic principle: active radial bearing and motor drive

Principle
- Active radial magnetic bearing for Δx and Δy
- Permanent magnet synchronous motor (PMSM)
- **Stator** with bearing and drive windings...
 - ...and position and angular sensors
- **Rotor** with permanent magnets and back iron

Key parameter
- Number of stator teeth: $N = 24$
 - \Rightarrow 12 motor teeth
 - \Rightarrow 12 bearing teeth
- Number of rotor pole-pairs: $p = 13$
Basic principle: active radial bearing and motor drive

Motivation
Basic principle: passive bearing
Basic principle: active bearing and drive

Introduction
Winding configurations
Parameter optimization
Conclusion and verification

GG-02 Novel bearingless motor with 26 poles and 24 slots
Basic principle: active radial bearing and motor drive

- Motivation
 - Basic principle: passive bearing
 - Basic principle: active bearing and drive

Introduction
Winding configurations
Parameter optimization
Conclusion and verification

- Basic principle: passive bearing
- Basic principle: active radial bearing and motor drive

Diagram:
- Rotor with permanent magnets
- Stator iron
- Air gap

Figure Description:
- Novel bearingless motor with 26 poles and 24 slots.
Basic principle: active radial bearing and motor drive

- **drive coils**
- **air gap**
- **stator iron**

Rotor with permanent magnets

Motivation
- Basic principle: passive bearing
- Basic principle: active bearing and drive

Basic principle: active radial bearing and motor drive

- **Introduction**
- Winding configurations
- Parameter optimization
- Conclusion and verification
Basic principle: active radial bearing and motor drive

Motivation
- Basic principle: passive bearing
- Basic principle: active bearing and drive

Basic principle: active radial bearing and motor drive

- Drive coils
- Bearing coils
- Air gap
- Rotor with permanent magnets
- Stator iron

Novel bearingless motor with 26 poles and 24 slots
Basic principle: active radial bearing and motor drive

- Drive coils
- Bearing coils
- Air gap
- Rotor with permanent magnets
- Stator iron
- Angular and position sensors
Permanent magnet synchronous drive

Drive windings

Drive windings

Permanent magnet synchronous drive

Parameter optimization

Conclusion and verification

Active radial magnetic bearing
Permanent magnet synchronous drive

Drive windings

Drive phase D_1

D_2

D_3

T_D
Permanent magnet synchronous drive

Permanent magnet synchronous drive

Active radial magnetic bearing

Introduction
Winding configurations
Parameter optimization
Conclusion and verification

6 GG-02 Novel bearingless motor with 26 poles and 24 slots
Active radial magnetic bearing

Bearing windings

bearing phase B₁

B₂
B₃

Bearingless motor with 26 poles and 24 slots
Active radial magnetic bearing

Bearing windings

dense flux region

bearing phase B_1

sparse flux region

F_x
Active radial magnetic bearing
Parameter Optimization

Parameter to be optimized
- Rotor and stator length l
- Magnet thickness δ_{magnet}
- Magnet shape
- Tooth width w_{tooth}
- Number of windings

Criteria
- Maximum motor torque T_M
- Minimum cogging torque $T_{cogging}$
- Maximum levitation F_x
- Maximum axial stiffness k_z
- Minimum radial stiffness k_r

⇒ Optimization using 3D-FEM simulation
Motor torque optimization (example)

![Graph showing motor torque optimization](image)

- $T_{D,16000\text{A} \cdot \text{turns}}$ [Nm]
- $100 \cdot T_{\text{cogging}}$ [Nm]
- $T_{D,8000\text{A} \cdot \text{turns}}$ [Nm]
- $T_{D,4000\text{A} \cdot \text{turns}}$ [Nm]

r_{tooth} [mm] vs. T_{cogging}, T_D [Nm]
Bearing force optimization (example)

![Graph showing bearing force optimization for different current densities and slot widths.](image)

- $F_x, 16000 \text{ A-turns} \ [\text{N}]$
- $F_x, 8000 \text{ A-turns} \ [\text{N}]$
- $F_x, 4000 \text{ A-turns} \ [\text{N}]$
- $k_r \ [\text{N/mm}]$
- $k_z \ [\text{N/mm}]$

Graph Key:
- F_x: Axial force
- w_{tooth}: Tooth width
- k_r, k_z: Coefficients
- A: Current density

Notes:
- The graph illustrates the optimization of axial forces for varying slot widths and current densities.
- The coefficients k_r and k_z are critical in determining the bearing force optimization.
- The trend lines show how the forces change with different parameters.
Laboratory Prototype

- Rotor with permanent magnets (NdFeB)
- Stator with drive and bearing windings
- Position and angular sensors
- Air gap $\delta = 7$ mm
Performance Results

Prototype properties
- Outer diameter: $D = 500$ mm
- Rotor weight: $m = 3.1$ kg
- Air-gap: $\delta = 7$ mm

Bearing performance
- Max. bearing force: $F_x = 155$ N
- Max. displacement during acceleration: $\Delta x = 69 \mu m$
- Radial stiffness: $k_r = -70.0$ N/mm
- Axial stiffness: $k_z = 20.1$ N/mm

Motor performance
- Max. speed: $n_{\text{max}} = 1800$ rpm
- Acceleration time: $t_{0-1500} = 1.5$ s
- Rated torque: $T = 13.1$ Nm
Thank you for your attention!
Please feel free to ask questions.
zurcher@ieee.org
Motor Performance

- \(r_{max} \)
- \(n_r \)
- \(t_{0-1500} = 1.5 \text{ s} \)
- \(I_{drv} \)
- \(\Delta r \)
- \(\Delta r_{max} = 69 \mu m \)
- \(I_{bng} \)
Bearing Performance

- **$I_{bng,\text{max}} = 3.1\,\text{A}$**
- **$\Delta T = 160\,\text{ms}$**
- **$\Delta x = 90\,\mu\text{m}$**
- **$1\,\text{V} \approx 50\,\mu\text{m}$**

![Graph showing bearing performance](image-url)