Approaches to Overcome the Google/IEEE Little-Box Challenges

Johann W. Kolar et al.
ETH Zurich, Switzerland
Power Electronic Systems Laboratory
www.pes.ee.ethz.ch
Approaches to Overcome the Google/IEEE Little-Box Challenges

All Team Members of ETH Zurich/Fraunhofer/Fraza

ETH Zurich, Switzerland
Power Electronic Systems Laboratory
www.pes.ee.ethz.ch
Outline

► The Google Little Box Challenge
► Selection of Converter Topology / Modulation Scheme
► Components / Building Blocks
► 3D-CAD Construction
► Experimental Results
► Conclusions
The Google Little Box Challenge

Requirements
Grand Prize
Team
LiTTLE BOx CHALLENGE

- Design / Build the 2kW 1-Φ Solar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

Push the Forefront of New Technologies in R&D of High Power Density Inverters
LiTTLE BOX CHALLENGE

- Design / Build the 2kW 1-Φ Solar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm3 (50W/in3)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

- Push the Forefront of New Technologies in R&D of High Power Density Inverters
The Grand Prize

- Highest Power Density (> 50W/in³)
- Highest Level of Innovation

$1,000,000

Timeline
- Challenge Announced in Summer 2014
- 650 Teams Worldwide
- 100+ Teams Submitted a Technical Description until July 22, 2015
- 18 Finalists / Presentation @ NREL on Oct. 21, 2015, Golden, Colorado, USA
- Testing @ NREL, Colorado, USA / Winner will be Announced in Early 2016
Multi-National Team
- Switzerland
- Germany
- Slovenia
1-Φ Power Pulsation Buffer
Power Pulsation Buffer (1)

- Parallel Buffer @ DC Input

- Series Buffer @ DC Input

■ Parallel Approach for Limiting Voltage Stress on Converter Stage Semiconductors
Power Pulsation Buffer (2)

- Electrolytic Capacitor

$S_0 = 2.0 \text{ kVA}$
$\cos \Phi_0 = 0.7$
$V_{c,max} = 450 \text{ V}$
$\Delta V_c / V_{c,max} = 3\%$

- $C > 2.2 \text{ mF} / 166 \text{ cm}^3 \rightarrow$ Consumes 1/4 of Allowed Total Volume!

\[W_{c,max} \]
\[\Delta V_c / V_{c,max} \]
Power Pulsation Buffer (3)

- Series Resonant Circuit / Used in Rectifier Input Stage of Locomotives

\[C_r = 20 \, \mu F \]
\[L_r = 127 \, mH \] @ \[V_{lr} = 400 \, V \]

\[f_r = 120Hz \]

Unacceptably Large Inductor Volume!
Power Pulsation Buffer (4)

- Coupling Capacitor & Electronic Inductor

- Low $U_{C_{aux}}$ → Low Converter Losses
- High Values of C_K, C_{aux} Required for Low $U_{C_{aux}}$
- Full-Bridge Aux. Converter Allows Lower $U_{C_{aux}}$
Power Pulsation Buffer (4-a)

- Large Voltage Fluctuation Capacitor & DC/DC Buck (Boost) Converter Stage
- Foil or Ceramic Capacitor

\[V_{CR} \]

\[C_r \approx 140 \mu F \]
\[V_{CR} = 23.7 \text{ cm}^3 \]

- Very Good Compromise \(\rightarrow \) \(C_r \) - Volume / Power Electronics Complexity
Power Pulsation Buffer (4-b)

- Large Voltage Fluctuation Capacitor & DC/DC Buck (Boost) Converter Stage
- Foil or Ceramic Capacitor

![Diagram of power pulsation buffer circuit](image)

- $V = 48 \text{ cm}^3$
- $V = 166 \text{ cm}^3$

- Significantly Lower Volume Compared to Electrolytic Capacitors
Output Stage
Topology / Modulation
Derivation of Output Stage Topology (1)

- Inversion of Basic 1-Φ PFC Rectifier Topology

- Boost-Type 1-Φ PFC Rectifier

- DC/DC Buck Converter & Mains Frequency “Unfolder”

- Low-Frequency “Folder/ Unfolder” vs. PWM Operation of Output Stage
Derivation of Output Stage Topology (2)

- DC/DC Buck Converter & Output Frequency “Unfolder”

- PWM Operation of Mains Frequency Inverter @ $U < U_{\text{min}}$
- CM Component of Generated Output Voltage
Derivation of Output Stage Topology (3)

- Full Bridge Output Stage / Output Frequency Bridge Leg

- PWM Operation of Mains Freq. Bridge Leg @ $|u| < u_{0,\text{min}}$
- CM Component u_{CM} of Generated Output Voltage
Derivation of Output Stage Topology (4)

- Full Bridge Output Stage / Full PWM Operation

DM Component of u_1 and u_2 Defines Output u_0
CM Component of u_1 and u_2 Represents Degree of Freedom of the Modulation (!)
Remark: AC Side Power Pulsation Buffer

- Full Bridge Output Stage / Full PWM Operation

- CM Reactive Power of Output Filter Capacitors used for Comp. of Load Power Pulsation
- CM Reactive Power prop. 2 C
- DM Reactive Power prop. ½ C
ZVS of Output Stage / TCM Operation

- Full Bridge Output Stage / Full PWM Operation

- Triangular Current Mode (TCM) Operation for Res. Voltage Transition @ Turn-On/Turn-Off
- Required Only Measurement of Current Zero Crossings, \(i = 0 \)
- Variable Switching Frequency lowers EMI
Selected Converter Topology

- Interleaving of 2 Bridge Legs per Phase - Volume / Filtering / Efficiency Optimum
- Active 1-Φ Output Power Pulsation Buffer

- ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range - 4D TCM Interleaving
- Heatsinks Connected to DC bus / Shield to Prevent Capacitive Coupling to Grounded Enclosure
Interleaving
Switching Frequ. Modulation
4D-Interleaving

- Interleaving in Space & Time – Within Output Period
- Alternate Operation of Bridge Legs @ Low Power
- Overlapping Operation @ High Power

Remark: CM-Enhanced TCM Modulation

- CM Comp. of u_1, u_2 Changes Sw. Frequency
- Limits Sw. Frequency Variation
- Lower Sw. Losses
Selection of Switching Frequency

- Significant Reduction in EMI Filter Volume for Increasing Sw. Frequency

- Doubling Sw. Freq. f_s Cuts Filter Volume in Half
- Upper Limit due to Digital Signal Processing Delays / Inductor & Sw. Losses – Heatsink Volume
Realization

Components

Building Blocks
Power Semiconductors

- 600V IFX Normally-Off GaN GIT - ThinPAK8x8
- 2 Parallel Transistors / Switch
- Antiparallel CREE SiC Schottky Diodes

- 1.2V typ. Gate Threshold Voltage
- 55 mΩ $R_{ps,on}$ @ 25°C, 120mΩ @ 150°C
- 5Ω Internal Gate Resistance

\[\text{dv/dt} = 500\text{kV/μs} \]

- CeraLink Capacitors for DC Voltage Buffering
Advanced Gate Drive

- Fixed Negative Turn-off Gate Voltage Independent of Sw. Frequency and Duty Cycle
- Extreme dv/dt Immunity (500 kV/μs) Due to CM Choke at Signal Isolator Input

- Total Prop. Delay < 30 ns incl. Signal Isolator, Gate Drive, and Switch Turn-On Delay
Advanced Gate Drive

- Fixed Negative Turn-off Gate Voltage Independent of Sw. Frequency and Duty Cycle
- Extreme dv/dt Immunity (500 kV/μs) Due to CM Choke at Signal Isolator Input

- Gate Voltage T+
- Gate Voltage T-
- TCM Inductor Current
- Transistor Voltage

- Triangular Current Mode (TCM) Operation at No Load → ZVS and No Free Ringing of \(u_{T+} \), \(u_{T-} \) or \(i_L \)
High Frequency Inductors

- Multi-Airgap Inductor with Patented Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
- Very High Filling Factor / Low High Frequency Losses
- Magnetically Shielded Construction Minimizing EMI
- Intellectual Property of F. Zajc / Fraza

- L= 10.5μH
- 2 x 8 Turns
- 24 x 80μm Airgaps
- Core Material DMR 51 / Hengdian
- 0.61mm Thick Stacked Plates
- 20 μm Copper Foil / 4 in Parallel
- 7 μm Kapton Layer Isolation
- 20mΩ Winding Resistance / Q=800
- Terminals in No-Leakage Flux Area

- Dimensions - 14.5 x 14.5 x 22mm³
Thermal Management

- 30mm Blowers with Axial Air Intake / Radial Outlet
- Full Optimization of the Heatsink Parameters
- Outstanding Cooling Syst. Performance Index

- 200um Fin Thickness
- 500um Fin Spacing
- 3mm Fin Height
- 10mm Fin Length
- CSPI = 37 W/(dm³.K)
- 1.5mm Baseplate
Thermal Management

- 30mm Blowers with Axial Air Intake / Radial Outlet
- Full Optimization of the Heatsink Parameters
- Outstanding Cooling Syst. Performance Index

- Two-Side Cooling → Heatsink Temperature = 52°C @ 80W (8W Natural Convection)
Control Board & i=0 Detection

- Fully Digital Control - Overall Control Sampling Frequency of 25kHz
- TI DSC TMS320F28335 / 150MHz / 179-pin BGA / 12mmx12mm
- Lattice FPGA LFXP2-5E / 200MHz / 86-pin BGA / 8mmx8mm

- TCM Current / Induced Voltage / Comparator Output

 ![TCM Current, Induced Voltage, Comparator Output Diagram]

- i=0 Detection of TCM Currents Using R4/N30 Saturable Inductors
- Galv. Isolated / Operates up to 2.5MHz Switching Frequency / <10ns Delay
Power Pulsation Buffer Capacitor

- High Energy Density 2nd Gen. 400VDC CeraLink Capacitors Utilized as Energy Storage
- Highly Non-Linear Behavior \rightarrow Opt. DC Bias Voltage of 280VDC
- Losses of 6W @ 2kVA Output Power

- 108 x 1.2\(\mu\)F /400 V
- 23.7\(cm^3\) Capacitor Volume

- Effective Large Signal Capacitance of \(C \approx 140\mu\)F
Control of Power Pulsation Buffer

- Cascaded Control Structure

- Feedforward of Output Power Fluctuation
- Underlying Input Current / DC Link Voltage Control
Auxiliary Supply & Measurements

- ZVS Constant 50% Duty Cycle Half Bridge with Synchr. Rectification
- Compact / Efficient / Low EMI

- 10W Max. Output Power
- 380V...450V Input Operating Range
- 16V...16V DC Output in Full Inp. Voltage / Output Power Range
- 90% Efficiency @ P_{max}

- 19mm x 24mm x 4.5mm (2cm³ Volume)
Multi-Objective Optimization

- Detailed System Models - Power Buffer/Output Stage/EMI
- Detailed Multi-Domain Component Models (incl. GaN & SiC)
- Consideration of Very Large # of Degrees of Freedom

- Pareto Optimiz. ➔ Minim. Vol. of 207cm³ w/o EMI Filter
3D-CAD Construction
3D-CAD Construction (1)

- Built to the Power Density Limit @ $\eta = 95\%$ / $T_c < 60^\circ C$

- $88.7\text{mm} \times 88.4\text{mm} \times 31\text{mm} = 243\text{cm}^3$ (14.8in3) $\rightarrow 8.2\text{ kW/dm}^3$
3D-CAD Construction (2)

- Built to the Power Density Limit @ $\eta = 95\% / T_c < 60^\circ C$

Top Side Heatsink

- 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3) → 8.2 kW/dm3
3D-CAD Construction (3)

- Built to the Power Density Limit @ $\eta = 95\% / T_c < 60^\circ C$

- 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3) \rightarrow 8.2 kW/dm3
3D-CAD Construction (4)

- Built to the Power Density Limit @ $\eta = 95\%$ / $T_c < 60^\circ C$

Power Pulsation Buffer Inductors

$88.7\text{mm} \times 88.4\text{mm} \times 31\text{mm} = 243\text{cm}^3 (14.8\text{in}^3) \rightarrow 8.2 \text{ kW/dm}^3$

$\star 135 \text{ W/in}^3$
3D-CAD Construction (5)

- Built to the Power Density Limit @ $\eta = 95\% \quad / \quad T_c < 60^\circ C$

88.7 mm x 88.4 mm x 31 mm = 243 cm3 (14.8 in3) \rightarrow 8.2 kW/dm3

\star 135 W/in3
3D-CAD Construction (6)

- Built to the Power Density Limit @ $\eta = 95\%$ / $T_c < 60^\circ C$

- $88.7\text{mm} \times 88.4\text{mm} \times 31\text{mm} = 243\text{cm}^3 (14.8\text{in}^3)$ $\rightarrow 8.2\text{ kW/dm}^3$

- 135 W/in^3
3D-CAD Construction (7)

- Built to the Power Density Limit @ $\eta = 95\% / T_c < 60^\circ C$

Bottom Side Heat Sink

- $88.7\text{mm} \times 88.4\text{mm} \times 31\text{mm} = 243\text{cm}^3 (14.8\text{in}^3) \rightarrow 8.2\text{ kW/dm}^3$

$\star 135\text{ W/in}^3$
3D-CAD Construction (8)

- Built to the Power Density Limit @ $\eta = 95\% / T_c < 60^\circ C$

- $88.7\, mm \times 88.4\, mm \times 31\, mm = 243\, cm^3 \, (14.8\, in^3) \rightarrow 8.2\, kW/dm^3$
3D-CAD Construction (9)

- Built to the Power Density Limit @ $\eta = 95\% / T_c < 60^\circ C$

Gate Driver Board

- 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3) \Rightarrow 8.2 kW/dm3

- 135 W/in3
3D-CAD Construction (10)

- Built to the Power Density Limit @ $\eta = 95\%$ / $T_c < 60^\circ C$

88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3) \rightarrow 8.2 kW/dm3
3D-CAD Construction (11)

- Built to the Power Density Limit @ $\eta = 95\% / T_c < 60\degree C$

88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3) \rightarrow 8.2 kW/dm3
3D-CAD Construction (12)

- Built to the Power Density Limit @ $\eta = 95\%$ / $T_c < 60^\circ C$

\[88.7\text{mm} \times 88.4\text{mm} \times 31\text{mm} = 243\text{cm}^3 (14.8\text{in}^3) \rightarrow 8.2\text{ kW/dm}^3 \]
3D-CAD Construction (13)

- Built to the Power Density Limit @ $\eta = 95\%$ / $T_c < 60^\circ C$

88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3) \rightarrow 8.2 kW/dm3
Experimental Results

Hardware
Output Voltage/Input Current Quality
Thermal Behavior
Efficiency
EMI
Little-Box Prototype I

- System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer

273cm³
7.3 kW/dm³
97.5% Efficiency @ 2kW
\(T_c = 58°C \) @ 2kW

\[\Delta u_{DC} = 2.85\% \]
\[\Delta i_{DC} = 15.4\% \]
\[THD+N_u = 2.6\% \]
\[THD+N_I = 1.9\% \]

97mm x 90.8 mm x 31mm (16.6in³)

- Compliant to All Specifications
Measurement Results I-(1)

- System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer

Compliant to All Specifications
Measurement Results I-(2)

- System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer

- Heating of System Lower than Specified Limit ($T_{C,max} = 60^\circ C \ @ \ T_{amb} = 30^\circ C$)

\[\eta_w = 96.4\% \] \hspace{1cm} Weighted Efficiency

![Image of measurement results with a graph showing efficiency vs. output power and a thermal image of the system.](image-url)
Measurement Results I-(3)

- System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer

$P_{out}=400\text{W}$

$P_{out}=2\text{kW}$

■ Compliant to All Specifications
Little-Box Prototype II-(1)

- System Employing Active 1-Φ Power Pulsation Buffer

243 cm³
8.2 kW/dm³
96.3% Efficiency @ 2kW
\(T_c=58^\circ\text{C} \) @ 2kW

\(\Delta u_{DC} = 1.1\%\)
\(\Delta i_{DC} = 2.8\%\)
\(THD+N_U = 2.6\%\)
\(THD+N_I = 1.9\%\)

88.7mm x 88.4mm x 31mm (14.8in³)

- Compliant to All Specifications
Little-Box Prototype II-(1)

- System Employing Active 1-Φ Power Pulsation Buffer

243 cm³
8.2 kW/dm³
96.3% Efficiency @ 2kW

$T_c=58°C @ 2kW$

$\Delta u_{DC} = 1.1\%$
$\Delta i_{DC} = 2.8\%$

$THD+N_U = 2.6\%$
$THD+N_I = 1.9\%$

88.7mm x 88.4mm x 31mm (14.8in³)

Compliant to All Specifications
Measurement Results II-(2)

- System Employing Active 1-Φ Power Pulsation Buffer

- Ohmic Load / 2kW

Output Current
- Inductor Current
 - Bridge Leg 1-1
 - Bridge Leg 1-2

DC Link Voltage (AC-Coupl.)
- Buffer Cap. Voltage
- Buffer Cap. Current
- Output Voltage

- Compliant to All Specifications
Measurement Results II-(3)

- System Employing Active 1-Φ Power Pulsation Buffer

\[\eta_w = 95.07\% \quad \text{Weighted Efficiency} \]

Compliant to All Specifications
Measurement Results II-(5)

- System Employing Active 1-Φ Power Pulsation Buffer

- Start-up and Shut-Down (No Load Operation)
Conclusions
Conclusions

- 2kVA 1-Φ Inverter @ 240cm³ (15in³) → 8kW/dm³ (135W/in³)
- 400...450VDC Input / 240VAC_{rms} Output
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

Lessons Learned

- Upper Sw. Frequency Limit of ≈1MHz Due to Digital Control / i=0 Detection
- Integrated Gate Driver for Even Higher Power Density
- High Frequency Low Loss Magnetics are Key Issue
- Isol. Distance Requirements Difficult to Fulfill
- Losses of Ceramic Capacitors for Large AC Ripple
- Careful Mounting of Ceramic Caps.

- New U-I-Probes Required for Ultra-Compact Conv. R&D
- Convergence of Sim. & Measurem. Tools → Next Gen. Oscilloscope
- New Multi-Obj. Multi-Domain Simulation/Optim. Tools

- Low Frequency (20kHz...120kHz) SiC vs. HF (200kHz...1.2MHz) GaN

- 100+ Teams
- 3 Members / Team, 1 Year
- 300 Man-Years
- 3300 USD / Man-Year
Outlook

- Embedded Switching Cell Package for Further Size Reduction
- Integr. Half Bridge Module incl. DC Link Caps and Drivers

- 2 Parallel Chips / Switch
- Embedded in PCB
- 8 mm Smaller than Conv. Design
- Extremely Low DC Link Inductance
- Driver Directly on Top of Switches
- Very Low Gate Inductance
Thank You!
Questions