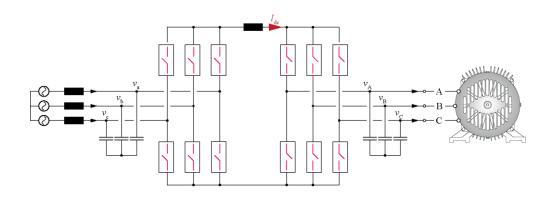
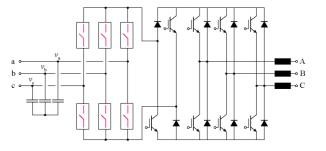
Power Electronic Systems Laboratory


ETH zürich



CURRENT DC-LINK CONVERTER SWITCH REQUIREMENT

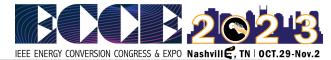
- CSR/CSI, Inverting Link Matrix Converters, Resonant Converters, Current-Fed Converters...
 Need Switch Capable of: *i*[†]On
 - **Bipolar** Voltage Blocking
 - <u>Unidirectional</u> Current Conduction

 $\bullet \bullet \bullet$


• Reversible Power Flow \rightarrow Inversion of DC-Link Voltage Polarity (!)

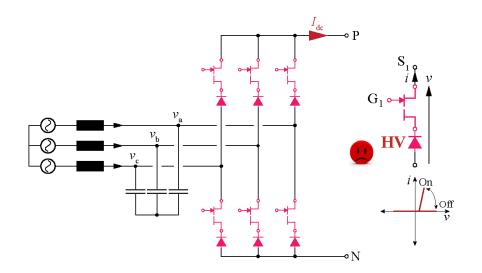
Self-Reverse-Blocking (SRB) Control of Dual-Gate Monolithic Bidirectional GaN Switch with Quasi-Ohmic On-State Characteristic - **Neha Nain**

, Off


15 min

Outline

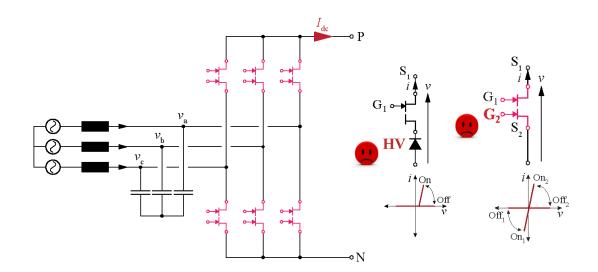
- **Existing Switch Concepts**
- Proposed RB-MBDS Concept
- Experimental Proof-Of-Concept
- Outlook

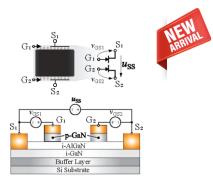


EXISTING SWITCH DEVICE CONCEPTS

HV Switch + HV Diode

HV Diode Characteristic, $2x v_{\text{Blocking}} \rightarrow$ High Cond. Losses



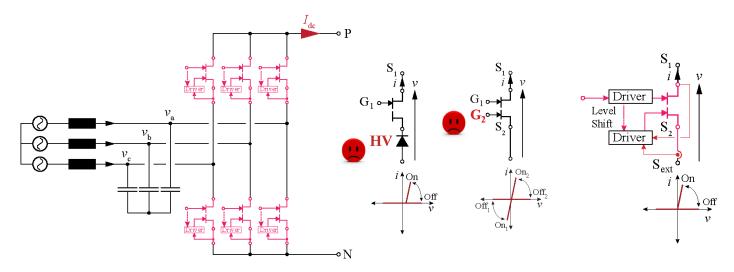

EXISTING SWITCH DEVICE CONCEPTS

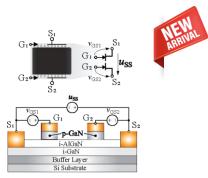
HV Switch + HV Diode

M-BDS

HV Diode Characteristic, $2x v_{Blocking} \rightarrow$ High Cond. Losses Ohmic Cond. Char. <u>BUT</u> 2x Gate Signals/2x Gate Drives

Monolithic Bidirectional GaN Device (M-BDS)





EXISTING SWITCH DEVICE CONCEPTS

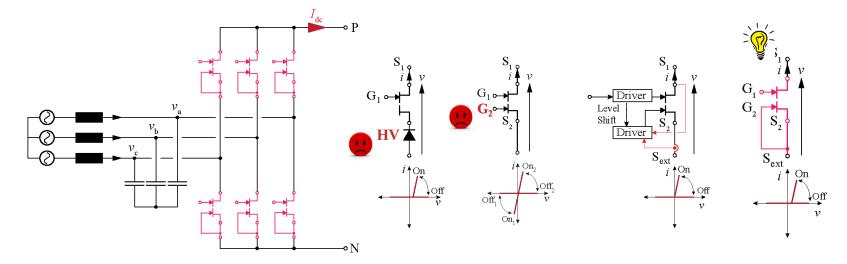
- HV Switch + HV Diode
- M-BDS
- Active "Self-Switching"

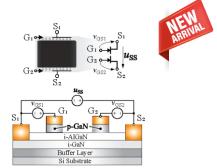
HV Diode Characteristic, $2x v_{Blocking} \rightarrow$ High Cond. Losses Ohmic Cond. Char. <u>BUT</u> 2x Gate Signals/2x Gate Drives Ohmic Cond. Char. <u>BUT</u> High Complexity (V&I Sensing)

Monolithic Bidirectional GaN Device (M-BDS)

PROPOSED CONCEPT

HV Switch + HV Diode


Power Electronic Systems Laboratory


M-BDS

ETH zürich

Active "Self-Switching"

HV Diode Characteristic, $2x v_{Blocking} \rightarrow$ High Cond. Losses Ohmic Cond. Char. <u>BUT</u> 2x Gate Signals/2x Gate Drives Ohmic Cond. Char. <u>BUT</u> High Complexity (V&I Sensing)

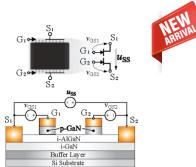
• SRB-MBDS with Norm. Off Gate

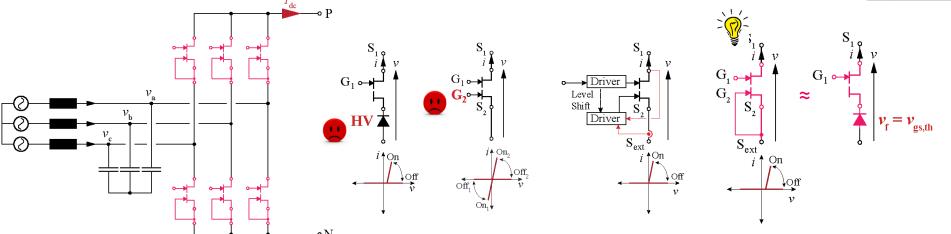
NICS SOCIETY

1x Gate Signals, Low Complexity

SELF REVERSE BLOCKING M-BDS (SRB-MBDS)

HV Switch + HV Diode


Power Electronic Systems Laboratory


M-BDS

ETH zürich

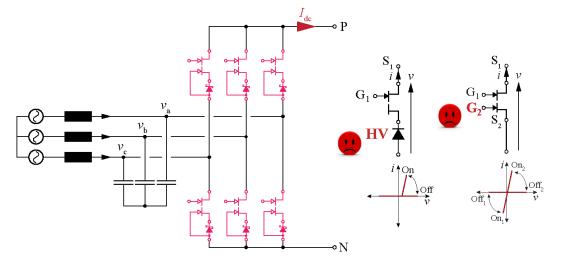
Active "Self-Switching"

HV Diode Characteristic, $2x v_{Blocking} \rightarrow$ High Cond. Losses Ohmic Cond. Char. <u>BUT</u> 2x Gate Signals/2x Gate Drives Ohmic Cond. Char. <u>BUT</u> High Complexity (V&I Sensing)

• SRB-MBDS with Norm. Off Gate

e 1x Gate Signals, Low Complexity <u>BUT</u> High v_f = v_{gs,th}

Gi ort


Buffer Lave

HV Switch + HV Diode

Power Electronic Systems

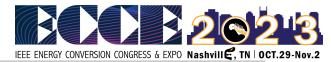
ETH zürich

M-BDS Active "Self-Switching" HV Diode Characteristic, $2x v_{Blocking} \rightarrow$ High Cond. Losses Ohmic Cond. Char. <u>BUT</u> 2x Gate Signals/2x Gate Drives Ohmic Cond. Char. <u>BUT</u> High Complexity (V&I Sensing)

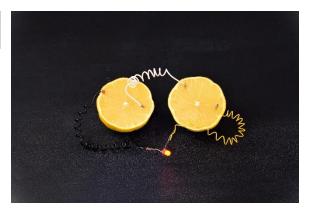
SRB-MBDS with Norm. Off Gate
SRB-MBDS with Norm. On Gate

1x Gate Signals, Low Complexity <u>BUT</u> High $v_f = v_{gs,th}$ Cascode with LV Si Schottky Diode Quasi-Ohmic Cond. Char., Low Complexity & 1x External Gate

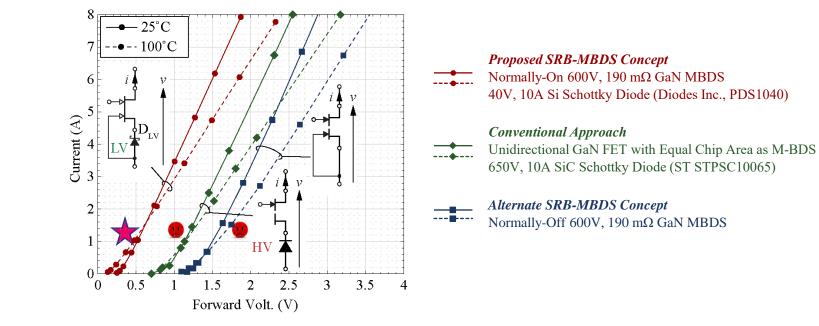
Level



Self-Reverse-Blocking (SRB) Control of Dual-Gate Monolithic Bidirectional GaN Switch with Quasi-Ohmic On-State Characteristic - **Neha Nain**


12

EXPERIMENTAL VERIFICATION



MEASUREMENT RESULTS – STATIC CHARACTERISTICS (1)

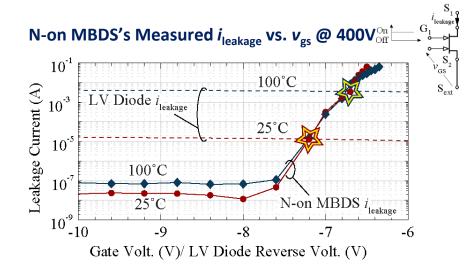
Forward Characteristics

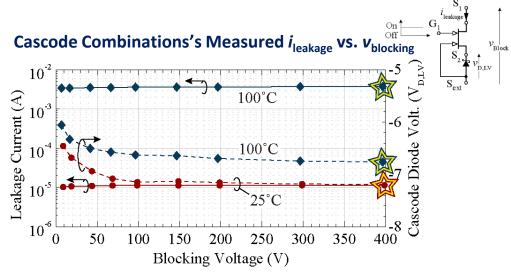
Proposed SRB-MBDS - Quasi Ohmic Conduction Characteristics

LECTRONICS SOCIETY

nels

• M-BDS r_{ds,on} Dominates at High Current



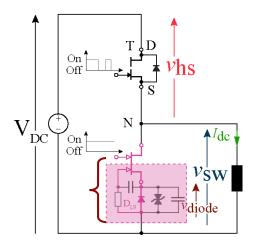


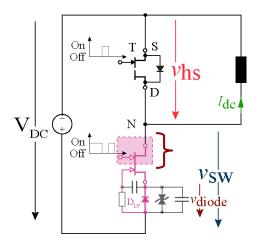
MEASUREMENT RESULTS – STATIC CHARACTERISTICS (2)

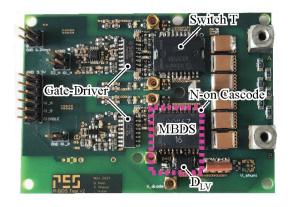
Reverse Characteristics – Proposed Cascode Combination Blocks Voltage!

- LV Diode *i*_{leakage} from Datasheet
- Intersection Decides Steady State Operating Point
- LV Diode Selection \rightarrow Subject to Tradeoff Between Low i_{leakage} and Low $v_{f,\text{LV}}$

- \downarrow MBDS's i_{leakage} with $\downarrow v_{\text{blocking}}$ Compensated by $\uparrow v_{\text{LV Diode}}$
- *I*_{leakage} Defined by LV Diode




MEASUREMENT RESULTS – SWITCHING CHARACTERISTICS

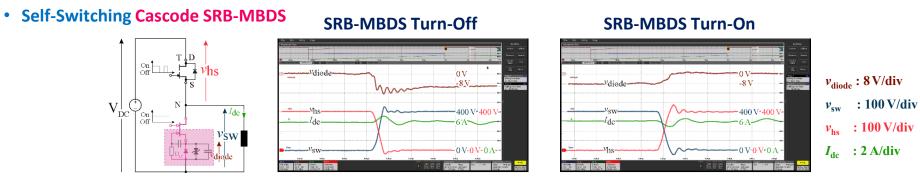

Double-Pulse Setup – Realized for Both *Blocking* **Polarities**

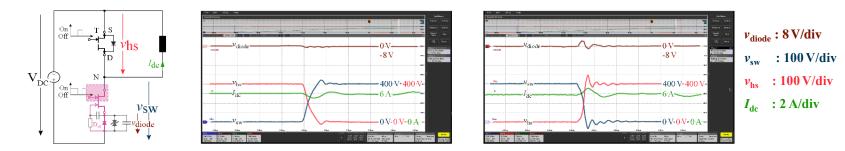
Self-Switching Cascode SRB-MBDS Blocks

Externally Accessible Gate Blocking

NOTE – Snubber Elements to Prevent Self-Sustained Turn-Off Oscillations

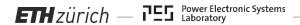
• Scope for Improvement with Co-Packaging!





MEASUREMENT RESULTS – SWITCHING CHARACTERISTICS

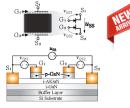
Experimental Results at ±400V, 6A and 100°C


• Externally Accessible Gate Blocking



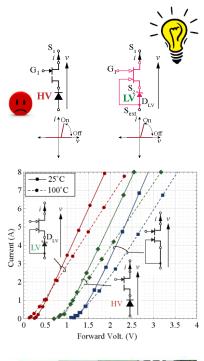
• Proposed SRB-MBDS Concept Feasible Even with Discrete Components!

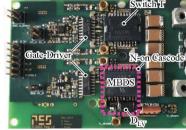
CONCLUSION _____



ETHZÜRICH — **PES** Power Electronic Systems Laboratory

CONCLUSION

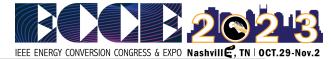

- **Bipolar Voltage Blocking & Unidirectional Current Switch Concepts Explored!**
- Conventionally with Transistor and HV Diode
 - ► High On-State Losses
- New Concept Proposed → N-on GaN M-BDS and LV Si Schottky Diode Cascode
 - Considerably Lower On-State Losses
 - Only One External Gate Control
 - No Additional Active Sensing



- Proof-of-Concept Demonstrated with Discrete Components
 - **•** Static and Switching Characteristics

ECTRONICS SOCIETY

Integration in Same Package – Possibility of Improved Performance



ETHzürich — **PS** Power Electronic Systems Laboratory

THANK YOU!

