Abstract: Electrodynamic suspension (EDS) is based on the repulsive force created by induced eddy currents in a conductive body (rail), a magnetic excitation system and a relative speed between the magnet field and the rail. When the excitation system is realized as Halbach array of permanent magnets and mounted on a moving vehicle (pod), it can create the required lift to levitate the pod and no further mechanical suspension is needed. EDS is one of the few vehicle suspension concepts that could operate reliably at high speeds. Therefore, it gains interest for high-speed transportation applications as for the Hyperloop project, which is mainly driven by the Space Exploration Technologies Corporation (SpaceX). Electrodynamic fields and forces have been analysed in detail in literature; however, the sophistication and/or limited applicability of analytical approaches or the computational burden of FEM/numerical methods render those impractical for the initial design of EDS systems. Therefore, power and loss scaling laws for EDS systems are derived in this work. A 3D simulation for a design example shows that the scaling law is within 10% deviation. Finally, the drag coefficient of EDS systems are compared to other forms of commercial high-speed ground and air transportation systems. A pod with EDS running in vacuum has the potential of decreasing energy consumption significantly above the cruising speeds of modern subsonic airliners.

1 Introduction

Even though the concept of high-speed travel in tubes is a more-than-a-century-old idea [1], and concrete technical designs for high-speed ground transportation in (partially) evacuated tubes have been published already several decades ago [2], the idea has recently regained popularity [3–6]. Also Elon Musk’s announcement in 2013 contributed to the regaining of interest, which details the design of the Hyperloop [7], a form of high-speed ground transportation that would reduce the travel time from Los Angeles to San Francisco (563 km/350 miles) down to 35 minutes. The proposed system is based on the idea of using small vehicles, denoted as pods that carry goods or passengers. The pods travel inside tubes, which are partially evacuated in order to eliminate or minimize air friction and it is intended to be an alternative for bullet trains up to distances of 1500 km/900 miles [7].

For maintaining a reliable operation at speeds above the state-of-the-art in ground transportation (up to \(\approx 100 \text{ m/s} = 360 \text{ km/h} \) for high-speed trains), contactless methods are needed for the suspension of a vehicle. Two candidate technologies considered today are air bearings and magnetic levitation. Electrodynamic suspension (EDS) systems with permanent magnets (PMs) and passive secondaries fall within the latter category, and they offer an interesting solution due to their simple construction and control.

In such systems, PMs are usually arranged as linear Halbach arrays, in order to generate a strong magnetic field with a minimum weight [8]. When the PMs are in motion, e.g. mounted at the bottom of the suspended vehicle, facing an electrically conductive and non-ferromagnetic (otherwise an attractive force will counteract the levitation force) surface (henceforth called the secondary), eddy currents are induced in the secondary, which in turn lead to repulsive Lorentz forces; hence suspension.

A vast amount of literature analysing electrodynamic fields and forces has been published over the last decades. Knowles has developed a general theory of EDS systems using a double Fourier series approach in [10]; Hill has solved Maxwell’s equations for obtaining lift and drag forces in simplified EDS geometries in [11]; and Ko and Ham have studied the transient behaviour of an EDS with a linear Halbach array using wavelet transformation in [12]. In addition to such analytical efforts, scholars have also commonly used finite element method (FEM) to analyse the performance of numerous EDS variants [13–15].

However, the sophistication and/or limited applicability of analytical approaches or the computational burden of FEM/numerical methods render those impractical for the initial design of EDS systems, which motivates the development of scaling laws. In a recent
work, Carlstedt et al. provided an in-depth discussion about the use of dimensional analysis for deriving similarity relationships. However, the analysis is based on a single PM [16] and is not extended towards a realistic EDS system. On the other hand, [17] provides an analytic calculation and FEM simulations of forces in an EDS system, however, a statement on energy consumption, condensed in a scaling law, is not included.

Therefore, the contribution of this paper is towards the study of feasibility and limitations of utilizing EDS systems in high-speed transportation and deriving power and loss scaling laws, respectively. The detailed modelling of the field source is excluded and the analysis starts with the assumption of a given magnetic field, which not only simplifies the derivation, but also broadens the analysis towards various EDS systems with different field sources. Both the lift and drag forces, as well as their ratio, which is the so-called drag coefficient, are derived analytically in Sec. 2. Afterwards, FEM simulations are used not only to validate analytical scaling laws, but also to quantify the effects occurring in practical designs in Sec. 3. Moreover, an example levitator design is shown in Sec. 4. Specifications for the application example are taken from the Hyperloop student competition organized by the Space Exploration Technologies Corporation (SpaceX), where the participants are asked to design and build a scaled-down model of a pod and test it on an approximately 1 mile (1.6 km) long test track. The track comprises a tube that can be evacuated; two horizontal, flat, aluminium surfaces (rails), above which the pod can be suspended; and an aluminium beam, which can be used for guidance of the pod. Fig. 1 illustrates Swissloop, the pod designed by the students of ETH Zurich for this competition [9].

For evaluating the design example, a 3D simulation is conducted and results are compared to the derived scaling law. Finally, the drag coefficient of EDS systems are compared to other forms of state-of-the-art high-speed ground and air transportation in Sec. 5.

2 Scaling Laws: A Simple and General Representation of the EDS System

The key elements of any EDS system are a magnetic field and an electrically conductive body (secondary). Both are in relative motion with respect to each other with a slip speed of \(v_s \), while the vehicle moves above the secondary with a speed of \(v_1 \). If the source of the magnetic field (primary) is a PM array or an electromagnet excited with a DC current, which is fixed on the vehicle, the reference system for the analysis is fixed to the secondary, and the slip speed equals the vehicle speed, \(v_s = v_1 \). On the other hand, different EDS systems employing either rotating PM arrays [18–20] or single-sided linear induction machines [21, 22] have also been proposed in literature, in which case \(v_s \neq v_1 \).

An analytical model for the magnetic field, induced current field and the resulting Lorentz force in the secondary is derived in the following. Even though a fixed PM array mounted on the vehicle is of primary interest, for the sake of generality, the slip speed \(v_s \) is used instead of the vehicle or primary speed \(v_1 \), and a magnetic field with a given form is assumed rather than conducting a detailed modelling of different primary arrangements. For brevity, both longitudinal end effects and transversal edge effects are omitted at the first step by assuming both the primary and secondary to be infinitely long and wide (cf. \(x \)-direction and \(y \)-direction in Fig. 2 respectively).

The analysis starts with the assumption of a sinusoidal flux density on the top side of the secondary with an amplitude of \(B \) and an \(x \)-axis spatial period of \(2\pi \), with \(\tau \) being the pole pitch. The flux density, which could be resulting from a Halbach arrangement of magnets above the air gap, is described by the expression

\[
\vec{B}_g(t) = \begin{bmatrix} B_{g,x} \\ B_{g,y} \\ B_{g,z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \hat{B}_g \sin \left(\frac{\pi}{2} + \omega_s t \right) \end{bmatrix},
\]

where \(\omega_s \) is the slip frequency, which is also the frequency of the eddy current density \(j_2 \) induced in the secondary

\[
\omega_s = \frac{v_s}{\tau}. \tag{2}
\]

For obtaining the flux density distribution in the secondary \(B_2 \), the following equations, which are derived from Ampere’s law, the Maxwell-Faraday equation and Gauss’s law for magnetism, are applied

\[
\nabla \times (\nabla \times \vec{B}_2) = -\mu_2 \cdot \kappa_2 \frac{\partial B_2}{\partial t}, \tag{3}
\]

\[
\frac{\partial B_{2,x}}{\partial z} = -\frac{\partial B_{2,z}}{\partial x}, \tag{4}
\]

where \(\mu_2 \) is the secondary permeability and \(\kappa_2 \) is the secondary conductivity. As outlined in [23], one can define the flux density in the secondary \(B_2 \) as the real part of an exponential function with complex eigenvalue \(s_B \)

\[
\begin{pmatrix} B_{2,x}(t) \\ B_{2,y}(t) \\ B_{2,z}(t) \end{pmatrix} = \text{Re} \left\{ \vec{B}_2 \cdot \exp \left(s_B \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) \right\}. \tag{5}
\]

With (4) and (5), one can obtain the solution for (3), where (1) is the boundary condition at the interface of air gap and secondary. With the qualified assumption that the pole pitch is sufficiently larger than the secondary skin depth

\[
\tau \gg \delta_{\text{skin}}, \tag{6}
\]

one can obtain the complex eigenvalue \(s_B \) of the field problem as

\[
\begin{pmatrix} j \pi/\tau \\ 0 \\ - (1+j)/\delta_{\text{skin}} \end{pmatrix}, \tag{7}
\]
with the skin depth
\[
\delta_{\text{Skin}} = \frac{2}{\omega \mu_0 \kappa_2} = \sqrt{\frac{2 \cdot \tau}{\pi \sqrt{\|B\| \cdot \mu_0 \kappa_2}}}. \tag{8}
\]

Therefore, the amplitude of the field distribution in the secondary \(\vec{B}_2\) can be obtained as
\[
\vec{B}_2 = \vec{B}_g \cdot \left(\begin{array}{c}
\frac{-1}{\delta_{\text{Skin}}} \\
0 \\
-j
\end{array}\right)
\]
and the solution for the secondary flux density can be expressed as a function of time as
\[
\vec{B}_2(t) = \vec{B}_g \cdot \exp \left(\frac{-z}{\delta_{\text{Skin}}}\right) \cdot
\begin{pmatrix}
\sin \left(\frac{\pi x}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right) \\
0 \\
\sin \left(\frac{\pi y}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right)
\end{pmatrix}, \tag{10}
\]

Furthermore, the current density distribution in the secondary \(j_2\) can be found with
\[
\vec{j} = 1/\mu_2 \nabla \times \vec{B}
\]
as
\[
j_2 = \frac{\vec{B}_g}{\mu_2} \cdot \exp \left(\frac{-z}{\delta_{\text{Skin}}}\right) \cdot
\begin{pmatrix}
\frac{2 \tau}{\delta_{\text{Skin}}} \\
\sin \left(\frac{\pi x}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right) \\
\sin \left(\frac{\pi y}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right)
\end{pmatrix}, \tag{11}
\]

which, using (6) again yields
\[
j_2 = \frac{\vec{B}_g}{\mu_2} \cdot \exp \left(\frac{-z}{\delta_{\text{Skin}}}\right) \cdot
\begin{pmatrix}
\frac{2 \tau}{\delta_{\text{Skin}}} \\
\sin \left(\frac{\pi x}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right) \\
\sin \left(\frac{\pi y}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right)
\end{pmatrix}. \tag{12}
\]

2.1 Lorentz Force Density

Following the derivation of the flux density \(\vec{B}_2\) and the induced current density \(j_2\), this section analyses the longitudinal (thrust or drag) and normal (lift) components of the Lorentz force.

The volumetric Lorentz force density
\[
f = j_2 \times \vec{B}_2,
\]
yields together with (10) and (13)
\[
f = -\frac{\vec{B}_g}{\mu_2} \cdot \exp \left(\frac{-z}{\delta_{\text{Skin}}}\right) \cdot
\begin{pmatrix}
\frac{2 \tau}{\delta_{\text{Skin}}} \\
\sin \left(\frac{\pi x}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right) \\
\sin \left(\frac{\pi y}{\tau} + \omega_b t - \frac{z}{\delta_{\text{Skin}}}\right)
\end{pmatrix}
\]
\[
\times \begin{pmatrix}
\frac{\sqrt{\tau^2 + \omega_b^2 t^2 - \frac{z}{\delta_{\text{Skin}}}}}{\delta_{\text{Skin}}} \\
0 \\
\frac{\sqrt{\tau^2 + \omega_b^2 t^2 - \frac{z}{\delta_{\text{Skin}}}}}{\delta_{\text{Skin}}}
\end{pmatrix}. \tag{14}
\]

A surface force density \(\sigma\), which is the force per magnetic interaction area \(A_{\text{mm}}\) in the \(x\)-\(y\) plane (cf. Fig. 2), follows as
\[
\sigma = \int_0^\infty f_z \, dz. \tag{16}
\]

The average surface force density, which can be directly applied to an initial dimensioning of an EDS system follows as
\[
\bar{\sigma} = \begin{pmatrix}
\bar{\sigma}_x \\
\bar{\sigma}_z
\end{pmatrix} = \begin{pmatrix}
-\frac{\mu_0}{2} \frac{\delta_{\text{Skin}}}{\kappa_2} \\
\frac{\mu_0}{2} \frac{\delta_{\text{Skin}}}{\kappa_2}
\end{pmatrix}. \tag{17}
\]

Rewriting (17) with (2) and (8), the ratio \(c_D = \bar{\sigma}_z/\bar{\sigma}_x = F_z/F_x\), which describes the relation between longitudinal force \(F_x\) and lift force \(F_z\) can be derived as
\[
c_D = \pi \frac{\delta_{\text{Skin}}}{\tau \kappa_2 \mu_0 \|B\|} \cdot \frac{2 \tau}{\sqrt{\tau^2 + \omega_b^2 t^2 - \frac{z}{\delta_{\text{Skin}}}}}.
\tag{18}
\]

In the case of a PM array fixed to the pod’s bottom, \(c_D\) is the drag-to-lift ratio, or as it will be called in the rest of this paper, the drag coefficient.
The specific power demand per lift force follows as

\[cp = c_D \cdot \frac{v_s}{v_D} = \sqrt{\frac{2\pi \cdot v_s}{\tau \cdot \kappa_2 \cdot \mu_2}} . \tag{19} \]

Consequently, the instantaneous power demand \(P_{\text{travel}} \) of the system can be calculated as

\[P_{\text{travel}} = m \cdot g \cdot \frac{c_D \cdot v_s}{c_p}, \tag{20} \]

where \(m \) is the total vehicle mass and \(g \) is the gravity. Hence, the propulsion system must be able to supply the required amount of power \(P_{\text{travel}} \) to maintain a constant speed.

2.2 Interpretation of Drag Coefficient Scaling

The above derived drag coefficient equation (18) shows directly how the losses of an EDS system scale with the secondary conductivity \(\kappa_2 \), the pole pitch \(\tau \) and the slip speed \(v_s \). Further results in this work are for an aluminium secondary with \(\kappa_2 = 35 \text{ MS/m} \), which is in accordance to most research projects in the field of EDS high-speed transportation (e.g. [7]). However, according to the scaling law (18), introducing a copper secondary would reduce the losses, regardless of the practical realization of the levitator, by a factor of \(\sqrt{\kappa_{\text{Al}}/\kappa_{\text{Cu}}} \approx 0.78 \) or 22%.

In order to illustrate the effect of the pole pitch \(\tau \) on the drag coefficient, the cause for build-up drag and lift force shall be analysed briefly. Clearly, the drag \(F_D \) is developed by the vertical component of the flux \(B_z \) and the current (density) flowing in the secondary

\[j_2. \] On the other hand, the lift force \(F_L \) is developed by the horizontal flux component in the secondary \(B_x \) and the current (density) flowing in the secondary \(j_2 \). Due to the skin effect and the law of magnetic flux conservation, illustrated for this specific case in Fig. 3a, the relation between flux in horizontal direction and vertical direction is

\[B_x \cdot \delta_{\text{Skin}} \sim B_z \cdot \tau. \tag{21} \]

Since the skin depth (cf. (8)) scales with (2) as \(\delta_{\text{Skin}} \sim 1/\sqrt{\tau} \), the influence of the pole pitch \(\tau \) on the drag coefficient must scale as

\[c_D = \frac{F_L}{F_D} \sim \frac{\delta_{\text{Skin}} \cdot j_2}{j_2} \sim 1/\sqrt{\tau}. \tag{22} \]

Moreover, Fig. 3b shows for two pole pitch values how lift force and drag develop over the depth in the secondary. One can see that most of the force (and secondary losses due to drag) is generated in the skin depth. While the peak value of drag force \((F_D) \) density is proportional to \(F_D \sim 1/\tau \), the peak value of the lift force \((F_L) \) density is proportional to \(F_L \sim 1/\sqrt{\tau} \).

3 Verification of the Scaling Laws: Ideal and Practical EDS Systems

2D FEM simulations are used in this section, first for the verification of the analytically derived scaling laws; and then, for the quantification of effects occurring in practical EDS systems. The first analysed effect is the finite length of the PM arrangement, which results in entry and exit effects. Those will be referred to as edge effects in the following. Secondly, the effect of higher-order magnetic field harmonics, originating from the realization of the primary as Halbach array will be studied.
where the model are defined as

where \(p \) is the number of pole pairs. The longitudinal boundaries of the model are defined as

\[
\vec{A}(x = 0) = \vec{A}(x = l_{\text{lev}})
\]

with \(\vec{A} \) being the magnetic vector potential. This corresponds to an infinitely long levitator since the magnetic vector potentials at both ends of the levitator are equal.

Fig. 5a and Fig. 5b show the analytically calculated drag coefficient and FEM simulation results for selected pole pitches and speeds. The derived scaling law and 2D FEM results agree well.

3.1 Infinitely Long, Ideally Magnetized Halbach Array

An infinitely long magnet with ideal, sinusoidal Halbach magnetization is used in a first step to verify the scaling law. Fig. 4a shows the magnet and the secondary. The magnetization \(M \) of the magnet is

\[
M(x) = \begin{bmatrix}
M_0 \sin \left(\frac{x}{\tau \cdot \pi} \right) \\
M_0 \cos \left(\frac{x}{\tau \cdot \pi} \right)
\end{bmatrix},
\]

(23)

with \(x \) being the position in \(x \) direction and \(M_0 \) the amplitude of the magnetization. The overall length of the levitator (consisting of an array of magnets with discrete magnetization or one sinusoidally magnetized magnet) is

\[
l_{\text{lev}} = 2 \cdot p \cdot \tau,
\]

(24)

where \(p \) is the number of pole pairs. The longitudinal boundaries of the model are defined as

In the following, the drag coefficient \(c_D \) is used to assess the effects of levitator imperfections. Table 1 lists the dimensions and material properties used for the FEM calculations.

Fig. 6: (a) The induced current density in the secondary for an infinitely long magnet with continuous magnetization moving at \(v_1 = 25 \) m/s, (b) a finite magnet with pole pair number \(p = 1 \) moving at \(v_1 = 25 \) m/s showing the edge effects of the induced currents and (c) the same finite magnet moving at \(v_1 = 350 \) m/s illustrating the effect of high speeds on the skin depth of the induced current.

Table 1 lists the dimensions and ideal Halbach magnetization; and (d) the drag coefficient \(c_D \) for a finite-length levitator with varying incremental angles of magnetization, for a speed of \(v_1 = 100 \) m/s.

3.2 Finite-Length, Ideally Magnetized Halbach Array

An ideally magnetized levitator, cf. (23), with finite length is used to analyse the impact of longitudinal end effects on the levitator performance. This phenomenon is well known, described for linear induction machines and decreases the machine’s performance due to existing eddy currents, which do not longer contribute to thrust generation [24], p. 72. Similarly, for a levitator, finite length results in an increased drag coefficient. Fig. 6a shows the induced current density in the rail as an outcome of a 2D FEM simulation for a levitator with infinite length, while Fig. 6b shows the induced current density for a levitator with finite length. In Fig. 6a, the distribution of induced currents is homogeneous and shows a characteristic wave pattern. The distribution of eddy current fields in an EDS system with finite length shows inhomogeneities at the ends of the levitator, which is denoted as edge effect in Fig. 6b. For illustrative purposes, Fig. 6a and Fig. 6b are given for low speed (\(v_1 = 25 \) m/s) and hence, for
a larger skin depth. Fig. 6c illustrates the field distribution of the system cruising at high speed \((v_{\text{l}} = 350 \text{ m/s})\).

For stating the quantitative effect of finite magnet length, Fig. 7a shows the z-component of the air gap field \(B_{g,z}\) for a levitator with \(p = 2\) and \(\tau = 0.5 \text{ m}\). It shall be denoted that this is only the field of the magnet as defined in (1), without the eddy current reaction. The ends of the levitator lead to a steep slope of the field in the air gap.

Fig. 7b quantifies the end effect by comparing the drag coefficients \(c_{\text{D,finite}}\) for finite-length levitators with pole pitch \(\tau = 0.5 \text{ m}\) and different pole pair numbers \(p\), moving at \(v_{\text{l}} = 100 \text{ m/s}\). As expected, a performance degradation is seen, especially with lower pole pair numbers. Nevertheless, the increase of the \(c_{\text{D,finite}}\) is limited to 15\%, and approaches the ideal value \(c_{\text{D,\infty}}\) for a higher number of pole pairs.

3.3 Finite-Length, Segmented Halbach Levitator

Practical Halbach arrays are often assembled using discrete magnets, each with a uniform direction of magnetization. The angle between the magnetization directions of neighbouring magnets is denoted here with \(\varphi_{\text{im}}\). Fig. 4b shows a Halbach array with \(\varphi_{\text{im}} = 90^\circ\). Fig. 7c shows the z-component of the air gap field \(B_{g,z}\) for a levitator with \(p = 2\) and \(\tau = 0.5 \text{ m}\) for \(\varphi_{\text{im}} = 90^\circ\) and \(\varphi_{\text{im}} = 45^\circ\).

The discrete magnetization leads to an additional distortion of the air gap field and increases the drag coefficient. The amount of field distortion and the drag coefficient are inversely proportional to \(\varphi_{\text{im}}\) as shown in Fig. 7d. Smaller \(\varphi_{\text{im}}\) values constitute to a better approximation of the continuously magnetized levitator. This example shows that a levitator with a discretization angle of \(\varphi_{\text{im}} = 90^\circ\) features a drag coefficient \(c_{\text{D}}\) that is \(\approx 9\%\) higher compared to a continuously magnetized levitator. However, a reduction of the discretization angle below \(\varphi_{\text{im}} < 15^\circ\) does not reduce the drag coefficient significantly.

3.4 Effects of Finite Levitator Width and Length

For the example design given in Table 2, end and edge effects due to the EDS levitator’s finite length and width as well as the discretization of its Halbach array \((\varphi_{\text{im}} = 15^\circ)\) are analysed. The simulation is conducted in 3D with a numeric method based on [25–27]. Fig. 8a illustrates the magnetic field on the surface of the aluminium rail for a speed of \(v_{\text{l}} = 100 \text{ m/s}\). One can identify a certain distortion due to finite length and width of the levitator. However, comparing the scaling law to the 3D simulation in Fig. 8b shows that the deviation is minor. The error of the scaling law was found to be \(< 10\%\) for interesting speeds of \(v_{\text{l}} > 100 \text{ m/s}\).

This clearly demonstrates that the analytical scaling laws are a valid tool for the initial design of practical systems, even though they have been derived assuming an ideal levitator.

4 Case Study: Levitator for the Hyperloop Competition

In order to illustrate the application of EDS in high-speed transportation further, an example levitation system in accordance to the specifications of the Hyperloop student competition [28] is given in this section. The levitation system is composed of two levitators, designed to float on the pair of flat aluminium surfaces running parallel to each other at the bottom of the evacuated tube. Each levitator is 2 m long and weights \(m_{\text{lev}} = 30 \text{ kg}\). The system has a pay-load capacity of up to \(m_{\text{p}} = 250 \text{ kg}\), while guaranteeing an air gap above 10 mm for speeds exceeding 25 m/s (90 km/h). Based on results in Sec. 3.3, the incremental angle of magnetization is set to \(\varphi_{\text{im}} = 15^\circ\). The magnet discretization results in only 7 differently magnetized blocks of magnets \(\{0^\circ, 15^\circ, 30^\circ, 45^\circ, 60^\circ, 75^\circ, 90^\circ\}\) with using the symmetry properties of the arrangement. With the chosen pole pitch \(\tau = 500 \text{ mm}\), the levitator’s discrete magnets can be realized as blocks of \(\tau/2 = 250 \text{ mm}\) length (in \(x\)-direction), \(w_{\text{lev}} = 120 \text{ mm}\) width (in \(y\)-direction) and \(h_{\text{lev}} = 16 \text{ mm}\) height (in \(z\)-direction). Further dimensions of the proposed design are summarized in Table 2.

Table 2 Dimensions of the example system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of levitators</td>
<td>(l_{\text{lev}})</td>
<td>2</td>
<td>(1)</td>
</tr>
<tr>
<td>Levitator length</td>
<td>(l_{\text{lev}})</td>
<td>2</td>
<td>(m)</td>
</tr>
<tr>
<td>Levitator width</td>
<td>(w_{\text{lev}})</td>
<td>0.12</td>
<td>(m)</td>
</tr>
<tr>
<td>Levitator height</td>
<td>(h_{\text{lev}})</td>
<td>0.016</td>
<td>(m)</td>
</tr>
<tr>
<td>Pole pitch</td>
<td>(\tau)</td>
<td>0.5</td>
<td>(m)</td>
</tr>
<tr>
<td>Incremental magnet. angle</td>
<td>(\varphi_{\text{im}})</td>
<td>15</td>
<td>((^\circ))</td>
</tr>
<tr>
<td>Levitator weight</td>
<td>(m_{\text{lev}})</td>
<td>30</td>
<td>(kg)</td>
</tr>
<tr>
<td>Payload</td>
<td>(m_{\text{p}})</td>
<td>250</td>
<td>(kg)</td>
</tr>
</tbody>
</table>

4.1 Steady State Air Gap and 1-D Dynamics of an EDS System

Fig. 9 shows the lift force of one levitator and the gravitational force \((m_{\text{p}}/2 + m_{\text{lev}})g\) of the mass, which is lifted by one levitator. The force equilibrium

\[
F_{z,L}(l_{g,S}, v_{1}) = F_{z,G} = (m_{p}/2 + m_{\text{lev}})g
\]

(26)

determines the speed dependent, steady-state air gap \(l_{g,S}\). Fig. 9 shows this for the limits of the operational range (25 m/s and
Fig. 9: Lift and gravitational forces acting on the levitation system for different air gaps and velocities, and stable air gap defined by the intersection with the gravitational force for the given payload. Tangents on the steady-state operating points show the stiffness of the EDS system.

350 m/s). The steady-state air gap stays within 12.8 mm ≤ l_g ≤ 18.6 mm.

As an extended vehicle stability analysis of an electrodynamically suspended pod is beyond the scope of this paper and task of further research, only a one-dimensional analysis of the resonance frequency is conducted, where a vertical displacement of the pod is considered. Tangent lines at the steady state levitation points in Fig. 9 show the stiffness of the proposed levitation system. As a displacement of the pod in direction of a decreased air gap causes an increase in lift force for all air gap positions, it can be concluded that the system is stable for small excitations and with regard to the considered displacement. With stiffness k and the pod’s mass m, the (undamped) mechanical resonance frequency for vertical oscillations is

\[f_{res} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \approx 0.07 \text{ Hz} \quad (27) \]

for all operating conditions. This rather low frequency is well suited for active damping systems, as it shall be possible to design either electromagnetic or mechanical (e.g. by using compressed gas, which may already be on board and utilized for propulsion) active damping systems that feature a bandwidth well above \(f_{res} \approx 0.07 \text{ Hz} \).

4.2 Considerations on the Achievable Range

In the following, the maximum range of the electrodynamically levitated high-speed pod shall be briefly discussed. Both the propulsion system and the energy storage systems are assumed to be on the pod, which is in accordance to [28]. It results in a very simple track structure with just flat conductors and no energized parts.

According to the results depicted in Fig. 8b, a drag coefficient of \(c_D = 0.04 \) and speed of 250 m/s (approximately 900 km/h or 560 mph) is assumed. Therefore, the power required to overcome the drag of the levitation system and to maintain this constant speed is \(P_{\text{travel}} = 30 \text{ kW} \). For the sake of simplicity, it is assumed at a first step that the total mass of the energy storage \(m_{\text{bat}} \) accounts for one third of the total vehicle mass \(m_{\text{tot}} \). At this point losses of the energy storage and the propulsion system are neglected. The required power density of the energy storage \(P'_{\text{bat}} \) can then be calculated as

\[P'_{\text{bat}} = \frac{P_{\text{travel}}}{m_{\text{bat}}} = 3 \cdot g \cdot c_D \cdot v_1 \approx 0.29 \text{ kW/kg}. \quad (28) \]

This is well below the power density of batteries used in commercial electric vehicles [29], e.g. Chevrolet Volt; \(P_{\text{bat}} \approx 0.65 \text{ kW/kg} \) [30]. Using the energy density \(W'_{\text{bat}} \approx 0.1 \text{ kWh/kg} \) of the aforementioned lithium-ion battery system, the reachable range \(x_{\text{range}} \) is

\[x_{\text{range}} = \frac{W'_{\text{bat}}}{3 \cdot g \cdot c_D} \approx 300 \text{ km}. \quad (29) \]

The range can be extended further by an energy storage with higher energy density, battery replacement stations, or (wireless) charging along the track. Alternatively, the energy storage and propulsion can be removed from the pod entirely by using an energized track that acts as the stator of a linear machine, whose mover is attached to the pod [7].

5 Comparison with Other Forms of High-Speed Transportation

In this section, an electrodynamically suspended vehicle is compared to other high-speed ground and air transportation systems. In order to achieve a simple comparison, several aspects such as their related propulsion/traction methods and their efficiencies or environmental impact are left out. Moreover, the vehicle is assumed to travel in a tube, which is completely air-evacuated (as e.g. proposed for the Hyperloop) and the drag coefficient of the EDS system \(c_D \) is selected as the sole performance metric. Fig. 10 depicts this comparison.

State-of-the-art high-speed ground transportation is represented in Fig. 10 by the German Inter City Express (ICE). The rolling resistance and the air-friction resistance of an ICE with 14 coaches and a mass of 800 000 kg is calculated according to Sauthoff’s equation [31], p. 40, up to 100 m/s. There is no literature for the rolling resistance of high-speed trains above this speed, since the high stresses in the mechanical suspension systems prevent increasing the speed further for regular passenger transportation. However, the rolling resistance of today’s modern high-speed trains is much lower than the aerodynamic resistance of an automobile. In the case of the Hyperloop, the aerodynamic drag is the dominant factor, as the vehicle is designed for speeds where the rolling resistance can be neglected.
lower compared to the drag coefficient of an EDS system below 100 m/s (300 km/h or 224 mph).

Nevertheless, the results turn in favour of the electrodynamically suspended vehicle when it is compared to state-of-the-art air transportation systems at speeds above 200 m/s. Küchemann [32], p. 341, gives an expected range of cruising drag coefficients for various aircraft, which is plotted in blue in Fig. 10. The drag coefficients for cruising operation for a Boeing 747 airplane [33], p. 20, an Airbus A380 [34], p. 4, and Concorde supersonic plane [35], p. 26 broaden this picture. Hence, it can be concluded that an electromagnetically suspended vehicle (e.g. Hyperloop pod) can significantly reduce the power required to cruise at speeds exceeding 250 m/s compared to today’s airplanes.

6 Conclusion

In this paper a simple, yet accurate analytical model for an electrodynamic suspension (EDS) system has been derived. Scaling laws (cf. (18) and (19)) are deducted from the model and give insight in the build up of the drag coefficient, which is drag per obtained lift force in an EDS system. The detailed modelling of the magnetic field source is omitted for the sake of simplicity, and a given magnetic field is assumed for the analysis in a first step. This enables the use of the presented method to evaluate various EDS systems with different excitations such as single-sided linear stators, rotating permanent magnets, and of course the most common and simplest variant, a static (fixed on a moving vehicle), linear Halbach array. According to the derived scaling law, the drag of the EDS system reduces with higher traveling speed, higher rail conductivity and longer pole pitch of the excitation system.

2D FEM models are first used to validate the analytical models. Afterwards, they are used to quantify the effects of practical design aspects, such as finite magnet length and the discrete realization of a Halbach array. Simulations verify the scaling law for the drag coefficient on practical EDS systems. An example levitator design is shown, which is in accordance to the specifications of the Hyperloop student competition. 3D simulations therefore considering finite levitator length and width as well as discretization of the EDS system’s Halbach array (ϕim = 15°) reveal that the error of the scaling law is minor (< 10%) for higher speeds (cρ > 100 m/s). Therefore, it can be concluded that the provided scaling law is sufficiently accurate for an initial design of an EDS system and for evaluating the feasibility of an application utilizing an EDS system. The study on the system realization concludes with analysing the resonance frequency of the suspension for an assumed displacement in vertical direction. For this mode it was calculated as < 1 Hz for the design example. Stability analysis of the analysed concept, considering all degrees of freedom in displacement as well as considerations on the track guiding of the levitated vehicle shall be analysed in forthcoming publications.

Finally, comparing the drag coefficient of EDS systems to other forms of state-of-the-art high-speed ground and air transportation presents an interesting picture. Above the cruising speeds of modern subsonic airliners, an electrodynamically levitated vehicle in an evacuated tube (e.g. Hyperloop) has the potential of increasing the cruising-speed energy efficiency significantly. The drag due to the EDS system decreases with increasing traveling speed, while air friction of airliners increases with traveling speed.

Acknowledgment

Acknowledgment is given to Tibor Stolz who contributed to the 3D eddy current simulation in the course of his M.Sc. thesis.

7 References