Vorrichtung zur transformatorischen Energieübertragung auf eine rotierende Welle.

Eine Vorrichtung zur transformatorischen Energieübertragung auf eine rotierende Welle weist auf: einen stehenden Teil (1) mit einer Primärwicklung (7) und einen mit der Welle rotierenden Teil (2) mit einer Sekundärwicklung (6), sowie einen Transformatorkern aus Magnetsperrmaterial, wobei die beiden Wicklungen (7,8) und der Transformatorkern (12,16,17) einen Transformator bilden. Dabei sind alle Teile des Transformatorkerns (12,16,17) am stehenden Teil (1) angeordnet, oder Teile des Transformatorkerns sind am rotierenden Teil (2) nur an Stellen geringer mechanischer Belastung durch Fliehkraft angeordnet.
Beschreibung

[0001] Die Erfindung bezieht sich auf das Gebiet der elektrischen Energie- und Signalübertragung und insbesondere auf eine Vorrichtung zur transformatorischen Energieübertragung auf eine rotierende Welle gemäss dem Oberbegriff des Patentanspruches 1.

[0003] Im Bereich von Robotik oder bei Materialbearbeitungssystemen besteht vielfach die Aufgabe, auf drehenden Teilen befindliche Systemteile mit elektrischer Energie zu versorgen. Vorteilhaft werden hierfür Transformatoren mit einem stehenden und einem rotierenden Teil eingesetzt, d.h., es wird die magnetische Kopplung beider Teile zur berührungslosen Übertragung elektrischer Leistung genutzt, wobei der Übertritt des magnetischen Flusses zwischen rotierendem und stehendem Teil axial oder radial ausgeführt sein kann.

[0004] Bei axialen Luftpalt bzw. axialer Führung des magnetischen Flusses im Übergangsbereich zwischen einem stehenden Teil 1 und einem rotierenden Teil 2 ist eine konzentrische Anordnung von zwei topförmigen zylindrischen magnetischen Schalenkernen 3, 4 mit Mittelsteg (Pot-Cores od. Schalenkerne) bekannt, deren offene Seiten sich mit geringer Distanz (Luftspaltlänge) 5 gegeneinanderstehen (Fig. 1). Der magnetische Fluss 6 kann sich so vom Mittelsteg des feststehenden Teiljes 1 (Primärseite) über einen inneren Luftpalt in den Mittelsteg des rotierenden Teiles 2 (Sekundärseite) fortsetzen und zylindersymmetrisch über dessen Aussenwände und über einen kreisringförmigen äusseren Luftpalt zurück in die Aussenwände bzw. den Mittelsteg der Primärseite schliessen. Eine Primärwicklung 7 ist dabei auf den Mittelsteg des primärseitigen Schalenkerns und eine Sekundärwicklung 8 auf den Mittelsteg des sekundärseitigen Schalenkerns gewickelt. Das System ist mechanisch einfach realisierbar, weist jedoch aufgrund der relativ grossen radialen Ausdehnung Beschränkungen hinsichtlich der Einsatzbedingungen bei hohen Drehzahlen auf. Um bei kleinem Bauvolumen eine möglichst hohe Leistung übertragen zu können, ist eine hohe Betriebsfrequenz des Transformators zu wählen, weshalb der Magnetkreis mit Bilck auf geringe Ummagnetisierungsverluste in Ferrit ausgeführt werden muss. Ferritmaterialien sind allerdings durch geringe mechanische Festigkeit gekennzeichnet, womit das Aussenendurchmesser bzw. der maximalen Drehzahl des Systems relativ tiefe Grenzen gesetzt, oder spezielle mechanische Verstärkungen in Form von Hülsen oder Bandagen vorzusehen. Zudem erhöht allgemein der rotierende Schalenkern mit Mittelsteg 4 die Masse der rotierenden Teile 2, wodurch für rasche Beschleunigung auf hohe Drehzahlen ein höheres Drehmoment benötigt wird bzw. bei Vorliegen einer Asymmetrie des Aufbaus — speziell mit grossem Aussenendurchmesser — starke Unwuchtkräfte verursacht werden.

[0005] Bei radialem Luftpalt (Fig. 2a) wird ein Zylinder 9 hoher Permeabilität (Kernmaterial) angeordnet und auf diesem die Sekundärwicklung 8 aufgebracht, wobei die beiden Enden des Zylinders nicht bewickelt werden. Zur Erhöhung der mechanischen Festigkeit wird der Zylinder vorbehaltll mit einer tragenden Welle 10 und einer Hüse hoher Permeabilität 11 ausgeführt (Fig. 2b). Der primärseitige Magnetkreis wird durch zwei konzentrische Kreisscheiben hoher Permeabilität 12 realisiert, welche beidseitig die Enden der Hüse hoher Permeabilität 11 überlappen und so angeordnet sind, dass einerseits ein radiaer Luftpalt 5 über den Umfang gleicher Breite verbleibt bzw. eine Drehung des Zylinders 9 oder der tragenden Welle 10 mit der Hüse hoher Permeabilität 11 möglich ist und andererseits die im Zylinder 9 oder in der Hüse hoher Permeabilität 11 fließende magnetische Fluss 6 einen Pfad geringer Reluktanz für einen radiaen Rückschluss hin zur Primärseite 1 zur Verfügung hat, wobei der primärseitige Flusspfad durch einen Hohlzylinder hoher Permeabilität 13, der ohne Luftpalt zwischen den beiden Kreisscheiben 12 sitzt und in dessen innerem die Primärwicklung untergebracht ist, vervollständigt wird. Diese Ausführung bietet den Vorteil eines geringen Aussenendurchmessers der rotierenden Teile 2 — somit eine Reduktion des benötigten Drehmoments für rasche Beschleunigung und Reduktion der Unwuchtkräfte — und einer einfachen Skalierung nach höheren Leistungen durch Vergrösserung der axialen Ausdehnung. Andererseits ist nach wie vor hinsichtlich mechanischer Festigkeit kritisches Ferritmaterial auf dem rotierenden Teil 2 unterzubringen und damit eine Einschränkung hinsichtlich der maximalen Drehzahl, dem weiterhin benötigten höheren Drehmoment und der weiterhin bestehenden Unwuchtkräfte gegeben.

[0006] Es ist deshalb Aufgabe der Erfindung, eine Vorrichtung zur transformatorischen Energieübertragung auf eine rotierende Welle der eingangs genannten Art zu schaffen, welche die oben genannten Nachteile behebt.

[0009] Dabei sind die Stellen geringer mechanischer Belastung durch Fliehkraft insbesondere Stellen, an denen sich der Transformatkern, in radialer Richtung gesehen, innerhalb der Radien der Sekundärwicklung befindet. Der äusserste Radius des rotierenden Teiles des Kernes ist also kleiner oder gleich dem äussersten Radius der Sekundärwicklung.
[0010] Es sind also gemäß einer Ausführungsform keine Teile des Transformatorkerns am rotierenden Teil angeordnet.

[0011] Gemäß einer Ausführungsform weist die Sekundärwicklung die Form eines Hohlzylinders auf und umfährt einen stehenden Teil des Transformatorkerns. Es ragt also der stehende Teil des Transformatorkerns in die Sekundärwicklung hinein.

[0012] Es gilt also für die verschiedenen Ausführungsformen auch, dass der Teil des Transformatorkerns, der von der Sekundärwicklung umfangen ist, entweder am stehenden Teil angeordnet ist oder sich in radialer Richtung nicht weiter als bis zur Sekundärwicklung erstreckt.

[0015] Gemäß einer Ausführungsform weist der Transformatorkernen einen am stehenden Teil angeordneten topförmigen zylindrischen Schalenkern auf, dessen Schale die Sekundärwicklung umfährt und dabei vom rotierenden Teil im Bereich der Sekundärwicklung nur durch einen Luftspalt getrennt ist.

[0017] Gemäß einer Ausführungsform ist die Sekundärwicklung eine zylindrische Spule und weist der Transformatorkern einen am stehenden Teil angeordneten topförmigen zylindrischen Schalenkern auf, dessen Schale die Sekundärwicklung umfährt, und einen ebenfalls stehenden Mittelsteg (Zapfen), der in die Sekundärwicklung hineinragt.

[0022] Im Folgenden wird der Erfindungsgegenstand anhand von bevorzugten Ausführungsbeispielen, welche in den beiliegenden Zeichnungen dargestellt sind, näher erläutert. Es zeigen jeweils schematisch:

Fig. 1: Axiale Ausführung eines rotierenden Transformators bekannter Art.

Fig. 2a, 2b: Radiale Ausführung eines rotierenden Transformators bekannter Art.

Fig. 3: Einen rotierenden Transformer mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungs träger in Form eines Hohlzylinders.

Fig. 4: Einen rotierenden Transformer mit einem Zapfen mit unterschiedlichen Durchmessern.

Fig. 5: Einen rotierenden Transformer mit einem verkürzten Zapfen und axialen Luftspalt.

Fig. 6: Einen rotierenden Transformer mit einem mitrotierenden Zylinder aus Kernmaterial und derselben Länge wie der Hohlzylinder.

Fig. 7a, 7b: Einen rotierenden Transformer mit einer im Luftspalt und auf dem Hohlzylinder befindlichen Sekundärwicklung.

Fig. 8: Einen Transformer mit einer im Luftspalt und innerhalb des Hohlzyinders befindlichen Sekundärwicklung.

Fig. 9: Einen rotierenden Transformer mit einer im Luftspalt und auf dem Hohlzylinder befindlichen Sekundärwicklung und einem mitrotierenden Zylinder aus Kernmaterial und verkürztem Zapfen mit axialen Luftspalt.
CH 705 833 B1

Fig. 10: Einen rotierenden Transformator mit einer im Luftspalt und innerhalb des Hohlzylinders befindlichen Sekundärwicklung und einem mitrotierenden Zylinder aus Kernmaterial und verkürztem Zapfen mit axialem Luftspalt.

[0024] Ein Aspekt der verschiedenen Ausführungsformen der Erfindung ist, nur einen Wicklungsträger und die Sekundärwicklung rotieren zu lassen, sämtliche Teile oder wesentliche Teile des Magnetkreises jedoch feststehend zu halten.

[0025] Fig. 3 zeigt einen beispielhaften Aufbau eines rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14 geringer Wandstärke, wobei ein Anfangs bereich (ausgehend vom geschlossenen Ende des Hohlzylinders 14) umgewickelt verbleibt, also nur ein Endbereich mit der Sekundärwicklung 8 bedeckt wird, wobei vorteilhaft sich radial und in Umfangsrichtung erstreckende Seitenwände 15 des Wicklungsbereiches vorliegen können. Zusätzlich zu den Seitenwänden 15 können auch Zwischenwände (Segmentierung der Sekundärwicklung 8) im Wicklungsbereich vorgesehen sein, welche zu einer Erhöhung der mechanischen Festigkeit des rotierenden Teils und Verbesserung der elektrischen Eigenschaften (Durchschlagfestigkeit) führen können. Die Sekundärwicklung kann auch mit leichten Materialien (z.B. Aluminium) ausgeführt werden, was zu einer Reduktion der rotierenden Masse und deren Uwuchtkräfte führt.

[0027] Der Schalenkern 16 wird bei der Montage konzentrisch mit dem Hohlzylinder 14 angeordnet und der Zapfen 17 so weit in diesen eingesoben - der Aussendurchmesser des Zapfens 17 ist so gewählt, dass gegenüber der Innenwand des Hohlzylinders 14 ein über den Umfang konstanter Luftspalt 5 verbleibt - dass das Zapfenende die Welle in axialer Richtung nicht berührt, also nach wie vor eine freie Drehung des Hohlzylinders 14 möglich ist. Anschliessend wird die vordere Kreisscheibe 12, deren Lochdurchmesser geringfügig grösser als der Ausseundurchmesser des Hohlzylinders 14 im Bereich ohne Wicklung gewählt ist (also mit einem über den Umfang konstanten Luftpalt 5), aufgebracht.

[0030] Fig. 4 zeigt einen beispielhaften Aufbau eines rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14 gemass Fig. 3, wobei der Zapfen 17 - weder mit Blick auf minimale Reluktanz - noch im Bereich der Lochinnenwand der Kreisscheibe 12 einen möglichst kleinen Luftspalt 5 gegenüber dem Hohlzylinder 14 aufweisen muss und über die weitere Länge mit geringerem Durchmesser ausgeführt sein kann, beispielsweise, um Freiraum für eventuelle Bliegeschwingungen des Hohlzylinders 14 zu belassen. Für eine einfachere mechanische Fertigung kann für den Zapfen 17 im Bereich der Lochinnenwand der Kreisscheibe 12 ein separater Zylinder 18 - beispielsweise aus demselben Material wie der Zapfen 17 - verwendet werden und dieser mechanisch mit dem Zapfen verbunden sein.

[0031] Fig. 5 zeigt einen beispielhaften Aufbau eines rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14 gemass Fig. 3, wobei im Bereich der Innen wandung der Kreisscheibe 12 ein Zylinder aus Kernmaterial 19 ohne Luftspalt in den Hohlzylinder 14 eingebracht, also mitrotierend, vorliegt, wodurch die Reluktanz des magnetischen Flusses 6 zum rotierenden Teil reduziert wird, da dann nur mehr der Luftspalt 5 als erster Luftspalt im Bereich der Aussenwand des Hohlzylinders 14 verbleibt.

[0033] Der Zapfen 17 ist dann so zu kürzen, dass ihn zum Ende des Zylinders aus Kernmaterial 19 als zweiter Luftspalt ein geringer axialer Luftspalt 20 verbleibt, also dessen Drehung nicht behindert und die Reluktanz des magnetischen Flusses 6 möglichst gering verbleibt.

[0034] Fig. 6 zeigt einen beispielhaften Aufbau eines rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14 und einem mitrotierenden Zylinder aus Kern-
material 19 gemäss Fig. 5, wobei weiterführend die Zylinder aus Kernmaterial 19 ebenfalls in den Bereich außerhalb der Innenwandung der Kreisscheibe 12 bis hin zum Ende des Hohlzylinders 14 verlängert ist.

[0035] Zur Verringerung der mechanischen Beanspruchung des Zylinders aus Kernmaterial 19 kann des Weiteren der Hohlzylinder 14 in Form einer Hülse mit Schrumpfsitz vorgesehen werden. Der Zapfen 17 ist dabei wiederum zu kürzen (bei maximaler Länge des Zylinders aus Kernmaterial 17 verschwindet der Zapfen 17 gänzlich), dass kein Ausdrehen des Hohlzylinders 19 ein geringer axialer Luftspalt 20 verbleibt, also die Drehung des Zylinders aus Kernmaterial 19 nicht behindert und die Reluksen des magnetischen Flusses 6 möglichst gering verbleibt. Für sämtliche der vorstehend beschriebenen Anordnungen (Fig. 3–Fig. 6) kann der Schalenkern 16 auch mit nicht über den ganzen Umfang geschlossenen Aussenwänden, also z.B. als E-Kern oder U-Kern, ausgeführt sein, einzig der Zapfen 17 soll vorteilhaft einen kreisrunden Querschnitt aufweisen.

[0036] Fig. 7a und 7b zeigen weitere Ausführungsformen eines erfindungsgemässen rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14, wobei nun die Sekundärwicklung 8 direkt im Luftspalt 5 des primärseitig feststehenden Magnetkreises, d.h. zwischen der Innenfläche der dann entsprechend breit ausgeführten Kreisscheibe 12 und dem Zapfen 17 angeordnet ist.

[0037] Die Länge des Hohlzylinders 14 wird dadurch verkürzt und so mechanische Resonanzen potentiell zu höheren Drehzahlen verschoben. Zudem weist diese Ausführung Vorteile bezüglich der Montage auf. Die Primärwicklung 7 ist beispielsweise auf dem Boden des Schalenkerns 16 (Fig. 7a) oder in einem unteren Teil einer Innenwand des Schalenkernes 16 angeordnet, also an einem von der offenen Seite des Schalenkerns befastbestandenen Bereich der Innenwand (Fig. 7a).

[0039] Fig. 8 zeigt einen beispielhaften Aufbau eines rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14 und einer sich im Luftspalt 5 befindlichen Sekundärwicklung 8 analog zur Fig. 7, wobei die Sekundärwicklung 8 in den Hohlzylinder 14 einggeschoben ist, der Hohlzylinder 14 also die Sekundärwicklung 8 in radialer Richtung umfährt. Für die Bauweise im Inneren des Hohlzylinders 14 ist durch dessen Wandung eine mechanische Verstärkung hinsichtlich der Fliehkräfte gegeben.

[0040] Fig. 9 zeigt einen beispielhaften Aufbau eines rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14 und einer auf den Hohlzylinder 14 gescho- benen im Luftspalt 5 befindlichen Sekundärwicklung 8 analog zur Fig. 7, wobei aufgrund des geringen Durchmessers des Hohlzylinders 14 und der dadurch geringen Fliehkräfte hier wieder ein Zylinder aus Kernmaterial 19 entsprechender Länge im Inneren des Hohlzylinders 14 mitrollierend vorgesehen und der Zapfen 17 entsprechend gekürzt werden, dass hin zum Ende des Zylinders aus Kernmaterial 19 wiederum ein geringer axialer Luftspalt 20 verbleibt.

[0041] Fig. 10 zeigt einen beispielhaften Aufbau eines rotierenden Transformators mit einem aus nichtmagnetisierbarem Material gefertigten Sekundärwicklungsträger in Form eines Hohlzylinders 14 und einer im Luftspalt 5 befindlichen Sekun- därwicklung 8 und einem mitrollierenden Zylinder aus Kernmaterial 19 und verkürztem Zapfen 17 mit axialen Luftspalt 20 analog zur Fig. 9, wobei die Sekundärwicklung 8 in den Hohlzylinder 14 eingeschoben ist.

Patentansprüche

1. Vorrichtung zur transformatorischen Energieübertragung auf eine rotierende Welle, aufweisend einen stehenden Teil (1) mit einer Primärwicklung (7) und einen mit der Welle rotierenden Teil (2) mit einer Sekundärwicklung (8), sowie einen Transformator Kern aus Magnetkernmaterial, wobei die beiden Wicklungen (7, 8) und der Transformator Kern (12, 16, 17) einen Transformator bilden, dadurch gekennzeichnet, dass alle Teile des Transformator Kerns (12, 16, 17) am stehenden Teil (1) angeordnet sind, oder Teile (19) des Transformator Kerns (12, 16, 17) am rotierenden Teil (2) nur an Stellen angeordnet sind, an denen sich der Transformator Kern, in radialer Richtung gesehen, innerhalb des Radius der Sekundärwicklung (8) befindet.

2. Vorrichtung gemäß Anspruch 1, in welcher die Sekundärwicklung (8) die Form eines Hohlzylinders aufweist und einen Zapfen (17) des Transformator Kerns (12, 16, 17) umfährt.

4. Vorrichtung gemäß einem der Ansprüche 1 bis 3, in welcher die Sekundärwicklung (8) eine Luftspaltwicklung ist.
5. Vorrichtung gemäß Anspruch 4, in welcher der Transformator kern (12, 16, 17) einen am stehenden Teil (1) angeordneten topförmigen zylindrischen Schalenkern (16) aufweist, dessen Schale die Sekundärwicklung (8) umfängt und dabei vom rotierenden Teil (2) im Bereich der Sekundärwicklung (8) nur durch einen Luftspalt getrennt ist (5).

6. Vorrichtung gemäß Anspruch 4 oder 5, wobei ein Teil (19) des Transformator kerns, der von der Sekundärwicklung (8) umfangen ist, mit der Sekundärwicklung (8) am rotierenden Teil (2) angeordnet ist und sich in radialer Richtung nicht weiter als bis zur Sekundärwicklung (8) erstreckt.

7. Vorrichtung gemäß einem der Ansprüche 3 bis 5, in welcher der Transformator kern (12, 16, 17) einen am stehenden Teil (1) angeordneten topförmigen zylindrischen Schalenkern (16) aufweist, dessen Schale die Sekundärwicklung (8) umfängt, und einen ebenfalls stehenden Mittelsteg oder Zapfen (17), der in die Sekundärwicklung (8) hineinragt.

