3-Φ SiC/GaN Converter Systems

Johann W. Kolar et al.
Swiss Federal Institute of Technology (ETH) Zurich
Power Electronic Systems Laboratory
www.pes.ee.ethz.ch
3-Φ SiC/GaN Converter Systems ... There is No Boogeyman Under the Bed

Johann W. Kolar et al.
Swiss Federal Institute of Technology (ETH) Zurich
Power Electronic Systems Laboratory
www.pes.ee.ethz.ch

Feb. 23, 2021
3-Φ SiC/GaN Converter Systems

... BUT Lots of Opportunities & Some Challenges ;-)
Outline

- Introduction
- Performance Trends
- 10x – Technologies / Concepts
- Research Results
- Conclusions

Acknowledgement

M. Antivachis
J. Azurza
D. Bortis
D. Cittante
M. Guacci
M. Haider
F. Krismer
S. Miric
J. Miniböck
N. Nain
P. Niklaus
G. Rohner
J. Schäfer
D. Zhang
Power Electronic Systems @ ETH Zurich

Industry Relations
R. Coccia

Johann W. Kolar

Adv. Mechatronic Systems
D. Bortis

AC-DC Converter
J. Huber
M. Heller
N. Nain

AC-AC Converter
M. Azurza
J. Auzeris

BC-DC Converter
J. Schäfer
M. Haider

DC-AC Converter
J. Schäfer
P. Geyn

Multi-Domain Modeling
F. Krismer
J. Böhnert

Measurement Technology
F. Krismer
P. Papamanolis

Advanced Mechatronics
D. Bortis
R. Giuffrida

Magnetic Levitation
D. Bortis
I. Bagaric

Secretariat
M. Kohn / Y. Schnyder

Accounting
P. Maurantoni

Computer Systems
M. Eisenstat

Electronics Laboratory
P. Seitz

20 Ph.D. Students
1 PostDoc
3 Research Fellows

ETH Zürich

Power Electronic Systems Laboratory
Research Scope

- Explore the Limits / Create New Concepts / Push the Envelope
- Maximize Technology Utilization
- Enable New Applications
Market Pull / Technology Push
Required Performance Improvements

- Power Density \([\text{kW/dm}^3]\)
- Power per Unit Weight \([\text{kW/kg}]\)
- Relative Costs \([\text{kW/} \$]\)
- Relative Losses \([\%]\)
- Failure Rate \([\text{h}^{-1}]\)

Environmental Impact...

- \(\text{kg}_{\text{Fe}} / \text{kW}\)
- \(\text{kg}_{\text{Cu}} / \text{kW}\)
- \(\text{kg}_{\text{Al}} / \text{kW}\)
- \(\text{cm}^2_{\text{Si}} / \text{kW}\)

State-of-the-Art

- Weight
- Volume
- Losses
- Failure Rate
- Costs
- Time-to-Market

- Connected Cognitive Power Electronic Systems \(\rightarrow\) Power Electronics 4.0
S-Curve of Power Electronics

- Power Electronics 1.0 → Power Electronics 4.0
- Identify “X-Concepts” / “Moon-Shot” Technologies
- 10x Improvement NOT Only 10% !

Performance

- Super-Junct. Techn. / WBG
- Digital Power Modeling & Simulation
- Power MOSFETs & IGBTs
- Circuit Topologies
- Microelectronics
- Modulation Concepts
- Control Concepts

SCRs / Diodes
Solid-State Devices

1958

2015

2025
3-Φ Variable Speed Drive Inverter Systems

State-of-the-Art Future Requirements

Source: PowerAmerica
Variable Speed Drive (VSD) Systems

- Industry Automation / Robotics
- Material Machining / Processing – Drilling, Milling, etc.
- Compressors / Pumps / Fans
- Transportation
- etc., etc.

... Everywhere!

• 60...70 % of All Electric Energy Used in Industry Consumed by VSDs
State-of-the-Art

- Mains Interface / 3-Φ PWM Inverter / Cable / Motor — Large Installation Space / Complicated
- Conducted EMI / Radiated EMI / Reflections on Long Motor Cables / Bearing Currents

- High Performance @ High Level of Complexity / High Costs (!)

Source: FLUKE
Surge Voltage Reflections

- Long Motor Cable $l_c \geq \frac{1}{2} t_r v$
- Short Rise Time of Inverter Output Voltage
- Impedance Mismatch of Cable & Motor \rightarrow Reflect. @ Motor Terminals / High Insul. Stress

$\rightarrow \ dv/dt- \ OR \ Full$-Sinewave Filtering / Termination & Matching Networks etc.
Motor Bearing Currents

- Switching Frequency CM Inverter Output Voltage → Motor Shaft Voltage
- Electrical Discharge in the Bearing (“EDM”)

Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt- OR Full-Sinewave Filters

Source: www.est-aegis.com

Source: BOSCH
VSD Inverter - Future Requirements

- “Non-Expert” Installation / “Sinus-Inverter” OR Motor-Integrated Inverter
- Low Losses & Low HF Motor Losses
- Low Volume & Weight
- Wide Output Voltage Range
- High Output Frequencies

Main “Enablers” → SiC/GaN Power Semiconductors & Adv. Inverter Topologies
X-Technology #1

Wide Bandgap Power Semiconductors
Si vs. SiC

- Si-IGBT / Diode → Const. On-State Voltage, Turn-Off Tail Current & Diode Reverse Recovery Current
- SiC-MOSFET → Massive Loss Reduction @ Part Load BUT Higher R_{th}

6x Si-IGBT 6x Si-Diode

6x SiC-MOSFET

1200V 100A
Die Size: 98.8mm2 + 39.4mm2

1200V 100A
Die Size: 25.6mm2

Space Saving of >30% on Module Level (!)
Low $R_{\text{DS(on)}}$ High-Voltage Devices

- **Higher Critical E-Field of SiC → Thinner Drift Layer**
- **Higher Maximum Junction Temperature $T_{J,\text{max}}$**

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>GaAs</th>
<th>4H/6H-SiC</th>
<th>GaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g (eV)</td>
<td>1.12</td>
<td>1.4</td>
<td>3.0-3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>E_C (M/V/cm)</td>
<td>0.25</td>
<td>0.3</td>
<td>2.2-2.5</td>
<td>3</td>
</tr>
<tr>
<td>μ_n (cm²/Vs)</td>
<td>1350</td>
<td>8500</td>
<td>1000-1000</td>
<td>1000</td>
</tr>
<tr>
<td>ε_r</td>
<td>11.9</td>
<td>13</td>
<td>10</td>
<td>9.5</td>
</tr>
<tr>
<td>V_{sat} (cm/s)</td>
<td>1×10^7</td>
<td>1×10^7</td>
<td>2×10^7</td>
<td>3×10^7</td>
</tr>
<tr>
<td>λ (W/cmK)</td>
<td>1.5</td>
<td>0.5</td>
<td>3-5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

$R_{\text{on}} = \frac{4V_n^2}{\varepsilon \mu_n E_C^3}$

For 1kV:

<table>
<thead>
<tr>
<th>Material</th>
<th>W (μm)</th>
<th>N_D (cm^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>100</td>
<td>10^{14}</td>
</tr>
<tr>
<td>SiC</td>
<td>10</td>
<td>10^{16}</td>
</tr>
</tbody>
</table>

$R_{\text{on,SiC}} \approx \frac{1}{300} R_{\text{on,Si}}$

- **Massive Reduction of Relative On-Resistance → High Blocking Voltage Unipolar Devices**
Si vs. SiC Conduction Behavior

- Si-IGBT → Const. On-State Voltage Drop / Rel. Low Switching Speed,
- SiC-MOSFETs → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

1200V 100A
Die Size: 98.8 mm² + 39.4 mm²
Source: Infineon

1200V 100A
Die Size: 25.6 mm²
Source: Cree

- Efficiency Characteristic Considering Only Conduction Losses
Si vs. SiC Switching Behavior

- **Si-IGBT** → Const. On-State Voltage Drop / Rel. Low Switching Speed,
- **SiC-MOSFETs** → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

Si-IGBT
- Const. On-State Voltage Drop
- Rel. Low Switching Speed

SiC-MOSFETs
- Resistive On-State Behavior
- Factor 10 Higher Sw. Speed

1200V 100A
Die Size: 98.8mm² + 39.4mm²

Source: Infineon

1200V 100A
Die Size: 25.6mm²

Source: Cree

Extremely High \(\frac{di}{dt}\) & \(\frac{dv}{dt}\) → Challenges in Packaging / EMI / Motor Insulation / Bearing Currents

Source: Cree
Challenges
Circuit Parasitics

- Extremely High di/dt
- Commutation Loop Inductance L_s
- Allowed L_s Directly Related to Switching Time t_s →

$$L_s \leq \frac{\alpha U_i}{I_L} = \alpha t_s \frac{U_i}{I_L}$$

- Advanced Packaging & Parallel Interleaving for Partitioning of Large Currents
Si vs. SiC EMI Emissions

- Higher dv/dt → Factor 10
- Higher Switching Frequencies → Factor 10
- EMI Envelope Shifted to Higher Frequencies

$f_s = 10\text{kHz}$ & 5kV/\mu s for (Si IGBT)

$f_s = 100\text{kHz}$ & 50kV/\mu s for (SiC MOSFET)

- Higher Influence of Filter Component Parasitics & Couplings → Advanced Design
Inverter Output Filters

dv/dt-Filters
Full-Sinewave Filters
Passive | Hybrid | Active dv/dt-Limitation

- **Passive** – Damped LC-Filter $f_C > f_S$
- **Hybrid** – Undamped LC-Filter & Multi-Step Sw. Transition
- **Active** – Gate-Drive Based Shaping of Sw. Transients

- $f_{sw} = 16\text{kHz}$
- $t_F = t_d = 130\text{ns}$
- $f_C = 2.4\text{ MHz}$

- Connection to DC-Minus & CM Inductor \rightarrow Limit CM Curr. Spikes / EMI / Bearing Currents
Comparison of dv/dt-Filtering Techniques (1)

- **Passive Concept**
 1. LCR-Filter
 2. Clamped LC-Filter

- **Hybrid Concept (3f$_S$)**
 1. LC-Filter
 2. Multi-Step Switching

- **Active Concept**
 1. Miller Capacitor
 2. Gate Curr. Control

Output Voltage Waveforms
- $V_{DC} = 800V$, $P_{out} = 10kW$, $6kV/us$

Example Waveforms
- $L = 3.8\mu H$
 - $C = 2.7nF$
 - $R = 19\Omega$
- $L = 4.1\mu H$
 - $C = 1.3nF$

1200V SiC / 16mΩ
- $C_M = 120pF$
Comparison of dv/dt-Filtering Techniques (2)

- **Comparative Evaluation of Passive & Active Concept**

 - **Losses / Power Density** – $V_{DC} = 800V$, $P_{out} = 10kW$, $f_{sw} = 16kHz$, 1200V SiC-MOSFETs (16mΩ)
Inverter Systems w/ Sinusoidal Output Voltages
ZVS/TCM Operation

- Sinusoidal Output Voltage
- ZVS of Inverter Bridge-Legs
- High Sw. Frequency & TCM \(\rightarrow\) Low Filter Inductor Volume

- Only 33% Increase of Transistor Conduction Losses Compared to CCM (!)
- Very Wide Switching Frequency Variation
TCM \rightarrow B-TCM

- Very Wide Switching Frequency Variation of TCM \rightarrow B-TCM

- TCM \rightarrow B-TCM — 10% Further Increase of Transistor Conduction Losses
B-TCM → S-TCM

- Sinusoidal Switching Boundaries → S-TCM
- Adaption for Low Output Power Considering $f_{sw,max} = 140$ kHz

- $TCM \rightarrow S-TCM \approx 10\%$ Further Increase of Transistor Conduction Losses
Remark

Residual ZVS Losses

- Overlap of u_{gs} & Channel Current i_{ch} @ High $I_{sw} > I_k$
- Temporary Turn-on Due to $u_{gs,i} > u_{th}$

- "Kink" Current I_k Dependent on Inner & Outer Gate Resistance & $u_{g,n}$

There are graphs showing voltage and current profiles, and a diagram illustrating the conditions and calculations for residual ZVS losses.
CCM & 2-Stage Full-Sinewave Output Filter (1)

- Sinewave Output & IEC/EN 55011 Class-A
- Low-Loss Active Damping of 1st Filter Stage — Neg. Cap. Current Feedback
- 2kW / 400V DC-Link 3-Φ 650V GaN Inverter ($I_{M}=5A$), $f_{out,\text{max}} = 500\text{Hz}$
- Sw. Frequency $f_s = 100\text{kHz}$

\Rightarrow Evaluation of Optimized Inductors — Soft Sat. Toroidal Iron Powder Cores

$L_1=200\mu\text{H (OD57S)} / C_1=2.5\mu\text{F} / L_2=25\mu\text{H (OD20S)} / C_2=2.5\mu\text{F} / L_d=33\mu\text{H} / R_d=5.6\Omega$

\Rightarrow Low-Loss Active Damping of 1st Filter Stage — Neg. Cap. Current Feedback

Sw. Frequency $f_s = 100\text{kHz}$

$f_{c,1}=7\text{kHz}$

$f_{c,2}=20\text{kHz}$
CCM & 2-Stage Full-Sinewave Output Filter (2)

- **Exp. Verification** — 650V E-Mode GaN Systems Transistors (50mΩ)
- **Sw. Frequency** $f_S = 100$kHz, **Efficiency** ≈98%
- **200mm x 250mm**

- Stationary Motor Phase Curr. /Voltage @ 2.5Nm & $f_{out} = 250$Hz
- Speed Increase from Standstill to $n = 3000$rpm in 60ms
CCM & 2-Stage Full-Sinewave Output Filter (3)

- Modification of Output Filter Structure
- Elimination of Direct Cap. Coupling Between Output and Noisy (!) DC+ (Due to R_{DC})
- For Opt. i_C-Feedback C_1 Realized Using \approxLinear Kemet KC-Link

- Modified Filter \rightarrow Compliance to EMI Standard EN55011 Class-A
X-Technology #2

Multi-Level / -Cell Converters & Modularity
Multi-Level (ML) Converter Scaling

- 1/N Reduction of Blocking Voltage → Lower $R_{DS(on)}$ Semiconductors ($R_{on} \sim U_B^2$)
- Eff. Increase of Sw. Frequency → $f_{sw,eff} = N f_{sw}$ (f_{sw} ... Individual Device)
- Larger Chip Area and/or Smaller L_o

$N = \# \text{ of Levels } -1$

$D-FOM = D-FOM(U_{dc}/N) \rightarrow \text{Results in } ML-\text{Performance (X-FOM) Dependent on } N$
Functional Principle of ML-Converters

- 3-Level Flying Cap. (FC) Converter Requires No Connection to DC-Midpoint
- Involves All Switches in Voltage Generation → Eff. Doubles Device Sw. Frequency
- FC Voltage Balancing Possible also for DC Output

- Risk of Transistor Overvoltage for Steep U_{dc} Changes
Scaling of ML Bridge-Leg Concepts

- Reduced Ripple @ Same (!) Switching Losses
- Lower Overall On-Resistance @ Given Blocking Voltage $\rightarrow 1+1=2$ NOT $2^2=4$ (!)
- Application of LV Technology to HV

\[\Delta i_{\text{max},N} = \frac{1}{N^2} \Delta i_{\text{max},N=1} \]

\[\frac{\Delta U_{\text{c,max},N}}{U} = \frac{\pi^2 (f_0)^2}{32 f_s} \frac{1}{N^3} \]

- Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy
X-FOM of ML-Bridge-Legs

- Quantifies Bridge-Leg Performance of N-Level FC Converters

$N = \# \text{ of Levels} - 1$

- Compared to 2-Level Benchmark @ Same Filter Ind. Volt-Seconds

$D - \text{FOM}(U_b) = \frac{1}{R_s(U_b)C_{\text{med}}(U_b)}$

$X - \text{FOM}(U_b, N) = N \cdot D - \text{FOM}(\frac{1}{2}U_b)$

$P_{\text{semi,min,ML}} \approx \frac{1}{N^{1.2}} P_{\text{semi,min,2L}}$

$A_{\text{chip,ML}} \approx N^{1.2} A_{\text{chip,2L}}$
7-Level Flying Cap. 200V GaN Inverter (1)

- DC-Link Voltage: 800V
- Rated Power: 2.2 kW / Phase
- 99% Efficiency → Natural Convection Cooling (!)

- High Effective Sw. Frequency (6 x 30kHz = 180kHz) → Small Filter Inductor L_o
7-Level Flying Cap. 200V GaN Inverter (2)

- **DC-Link Voltage**: 800V
- **Rated Power**: 2.2 kW / Phase
- **99% Efficiency** → Natural Convection Cooling (!)

- **High Effective Sw. Frequency** (6 x 30kHz = 180kHz) → Small Filter Inductor L_0

Efficiency (%) vs. **P_{rated} (%)**

- 7L, 800 V$_{dc}$
- 3L, 800 V$_{dc}$

Details:

- DC-Link Voltage: 800V
- Rated Power: 2.2 kW / Phase
- Efficiency: 99%
- Natural Convection Cooling
- High Effective Switching Frequency (6 x 30kHz = 180kHz)
- Small Filter Inductor L_0

Notes:

- 260 W/in3
3-Φ Hybrid Multi-Level Inverter Demonstrator

- Realization of a 99%+ Efficient 10kW 3-Φ 400V rms Inverter System
- 7-Level Hybrid Active NPC Topology / LV Si-Technology

200V Si → 200V GaN Technology Results in 99.5% Efficiency
Quasi-2L/3L Flying Capacitor Inverter
Quasi-2L & Quasi-3L Inverters (1)

- Operation of N-Level Topology in 2-Level or 3-Level Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Schweizer (2017)

- Reduced Average dv/dt \rightarrow Lower EMI / Lower Reflection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/Low $R_{DS(on)}$/Low S MOSFETs \rightarrow High Efficiency / No Heatsinks / SMD Packages
Quasi-2L & Quasi-3L Inverters (2)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Schweizer (2017)

3.3kW @ 230V_{rms}/50Hz
Equiv. f_S ≈ 48kHz

3.5kW/dm³
Eff. ≈ 99%

- Reduced Average dv/dt → Lower EMI / Lower Reflection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/Low $R_{DS(on)}$/Low S MOSFETs → High Efficiency / No Heatsinks / SMD Packages
Quasi-2L & Quasi-3L Inverters (3) - Schweizer (2017)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

Operation @ 3.2kW

- Conv. Output Voltage
- Sw. Stage Output Voltage
- Flying Cap. (FC) Voltage
- Q-FC Voltage (Uncntrl.)
- Output Current
- Conv. Side Current

- Reduced Average dv/dt → Lower EMI / Lower Reflection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/Low $R_{DS(on)}$/Low $\$$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages
Ultra-Compact Power Module with Integrated Filter

650V GaN E-HEMT Technology

$f_{S,eff} = 4.8\,\text{MHz}$

$f_{out} = 100\,\text{kHz}$
Integrated Filter GaN Half-Bridge Module

- Minimization of Filter Volume by Series & Parallel Interleaving & Extreme Sw. Frequency
- Handling of DC Output Requires Flying Capacitor Approach for Series Interleaving

\[f_{S,\text{eff}} = (M-1) \cdot f_s \]

\[f_{S,\text{eff}} = N \cdot f_s \]

\[M = 5 \]

\[N = 4 \]

\[f_{\text{out}} = f_{\text{on}} = (M-1) \cdot f_{\text{on}} \]

\[f_{\text{on}} = N \cdot f_{\text{on}} \]

\[v_{\text{on}} = \frac{V_{\text{in}}}{N} \]

\[v_{\text{out}} \]

\[V_{\text{in}} \]

\[T_{\text{on}} \]

\[T_{\text{off}} \]

\[C_{\text{on}} \]

\[C_{\text{off}} \]

\[L \]

\[V_{\text{in}}/\text{M} \]

\[V_{\text{out}} \]

\[V_{\text{out}}/\text{N} \]

\[V_{\text{on}} \]

\[V_{\text{off}} \]

\[f_{\text{on}} \]

\[f_{\text{off}} \]

\[f_{\text{out}} \]

\[f_{\text{in}} \]

\[f_{\text{eff}} \]

Target: Best Combination of Multiple Levels (M) & Parallel Branches (N)
4.8MHz GaN Half-Bridge Phase Module

- **Combination of Series & Parallel Interleaving**
 - 600V GaN Power Semiconductors, $f_{sw} = 800kHz$
 - Volume of $\approx 180cm^3$ (incl. Control etc.)
 - H_2O Cooling Through Baseplate

- Operation @ $f_{out}=100kHz$, $f_{S,eff}=4.8MHz$, $10kW$, $U_{dc}=800V$
Remark

High-BW High-CMRR Current Measurement

- **Extension of Commercial Hall Sensor** DC... $f_{Hall} = 500$kHz \rightarrow DC...20MHz
- **Low-Pass & High-Pass Filter Network** Combining HF-Sensor & LF Hall-Sensor

- **Hall Sensor Bandwidth** $f_{Hall} = 1.6$MHz
- **Rogowski Coil High-Pass Corner Frequency** $f_{int} = 1$kHz
- **Low/High-Pass Filter Cross-Over Network** $f_{filter} = 24$kHz
Motor-Integrated Inverter Systems
Stacked-Multi-Cell (SMC) Inverter

- **Fault-Tolerant VSD**
- **Low-Voltage Inverter Modules**
- **Very-High Efficiency / Power Density**
- **Automated Manufacturing**

- **Rated Power** $45kW$ / $f_{out} = 2kHz$
- **DC-Link Voltage** $1kV$

- **Smart Motor / Plug & Play** $|$ **Connected / Intelligent VSD 4.0**
Motor-Integrated SMC 200V GaN-Inverter

- Rated Power: 9kW @ 3700rpm
- DC-Link Voltage: 650V...720V
- 3-Φ Power Cells: 5+1
- Outer Diameter: 220mm

- Axial Stator Mount
- 200V GaN e-FETs
- Low-Capacitance DC-Links
- 45mm x 58mm / Cell

Main Challenge — Thermal Coupling/Decoupling of Motor & Inverter
Double-Bridge (DB) Inverter

- **Comparison to Conv. 2-Level Inverter + Front-End DC/DC Boost-Stage**

 - $U_b = 40V...120V$
 - $P = 1.0kW$
 - $f_s = 300kHz$ (200V EPC GaN)
 - $f_o = 5kHz$

- **Advantages** — Lower Sw. Losses & Lower # of Filter Inductors

- 210 W/in^3

- 98 W/in^3
Turbo-Compressor-Integrated DB GaN-Inverter

- E-Mobility 5…15kW Fuel Cell Pressurized Air Supply
- 1kW Rated Power, $f_{sw}=300\mathrm{kHz}$ $| n= 280'000\text{rpm} / f_{out}= 4.6\mathrm{kHz}$
- Low EMI / Low Cabling Effort

- Integration \rightarrow 2x System Power Density $| 97\% \rightarrow 98.5\%$ Inverter Efficiency
3-Φ 650V GaN Motor-Integrated Inverter

- Sigma-7F Servo Drive — Motor Integration of DC/AC Stage (TO-220 GaN)
- Distributed DC-Link System — Single AC/DC Converter / Smaller Cabinet
- 0.1 – 0.4kW / 270...324V Nominal DC-Link Voltage

- Small Size (0.4 kW @ 70 x 70x 170mm)
- Massive Saving in Cabling Effort / Simplified Installation

Source: YASKAWA
Remark: Overload Capability

- Highly Dynamic Robotics VSDs → 3x ... 5x Rated Torque for Seconds
- Small Chip Area → Low Thermal Time Constant of GaN HEMTs
- Trade-Off Between Overload Rating & Rated Power Efficiency

- 200V GaN vs. Si (Multi-Level Inverter) Comparison
X-Technology #3

Functional Integration & Synergetic Association
Motivation

- General / Wide Applicability
 - Adaption of (Load-Dependent) Supply Voltage & Motor Voltage
 - Wide Speed Range → Wide Output Voltage Range

- No Add. Converter for Voltage Adaption → Single-Stage Energy Conversion

Source: magazine.fev.com
Derivation of Buck-Boost Y-Inverter

- **Generation of AC-Voltages Using Unipolar Bridge-Legs**

- **Switch-Mode Operation of Buck OR Boost Stage** ⇒ Single-Stage Energy Conversion (!)
- **3-Φ Continuous Sinusoidal Output / Low EMI** ⇒ No Shielded Cables / No Insul. Stress
- **Standard Bridge-Legs / Building Blocks** ⇒ 1.2kV SiC MOSFETs

![Diagram of Buck-Boost Y-Inverter with unipolar bridge-legs and switch-mode operation]
Sinusoidal Modulation

- **Y-Inverter**

- **Motor Phase Voltages**

- **Const. DC Offset → Strictly Positive Output Voltages** u_{anN}, u_{bnN}, u_{cnN}
- **Mutually Exclusive Operation of the Half-Bridges → Low Switching Losses**
Boost-Operation \(u_{an} > U_i \)

- **Phase-Module**

- **Motor Phase Voltages**

- **Current-Source-Type Operation**
- **Clamping of Buck-Bridge High-Side Switch** → **Quasi Single-Stage Energy Conversion**
Buck-Operation $u_{an} < U_i$

- **Phase-Module**

- **Motor Phase Voltages**

- **Voltage-Source-Type Operation**
- **Clamping of Boost-Bridge High-Side Switch** → **Quasi Single-Stage Energy Conversion**
Discontinuous Modulation

- **Y-Inverter**

- **Motor Phase Voltages**

- Clamping of Each Phase for 1/3 of the Fund. Period ⇒ Low Switching Losses (!)
- Non-Sinusoidal Module Output Voltages / Sinusoidal Line-to-Line Voltages
Control Structure

- Motor Speed Control

- Cascaded Current / Voltage / Current Control Loops
- Seamless Transition between Boost- & Buck-Mode → “Democratic” Control
Y-Inverter VSD

- **Demonstrator Specifications**
 - Wide DC Input Voltage Range \(\Rightarrow 400...750\)\(V_{DC}\)
 - Max. Input Current \(\Rightarrow \pm 15A\)

- Max. Output Power \(\Rightarrow 6...11\) kW
- Output Frequency Range \(\Rightarrow 0...500\)Hz
- Output Voltage Ripple \(\Rightarrow 3.2\)V Peak @ Output of Add. LC-Filter
Y-Inverter Demonstrator

- DC Voltage Range: 400...750V\textsubscript{DC}
- Max. Input Current: ± 15A
- Output Voltage: 0...230V\textsubscript{rms} (Phase)
- Output Frequency: 0...500Hz
- Sw. Frequency: 100kHz
- 3x SiC (75mΩ)/1200V per Switch
- IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.

Dimensions → 160 x 110 x 42 mm3 (245W/in3)
Y-Inverter - Measurement Results

- **Stationary Operation**

 \[U_{DC} = 400V \]
 \[U_{AC} = 400V_{rms} \text{ (Motor Line-to-Line Voltage)} \]
 \[f_O = 50Hz \]
 \[f_S = 100kHz / \text{Discontinuous PWM} \]
 \[P = 6.5kW \]

- **Line-to-Line Output Voltage Ripple < 3.2V**
Efficiency Measurements

- **Dependency on Input Voltage & Output Power Level**

\[U_{DC} = 400V / 600V \]
\[U_{AC} = 230V_{\text{rms}} \text{ (Motor Phase-Voltage)} \]
\[f_S = 100kHz \]

→ **Multi-Level Bridge-Leg Structure** for Increase of Power Density @ Same Efficiency
EMI-Limits (VSD Product Standard)

- **IEC 61800-3** → Product Standard for Variable-Speed Motor Drives
- **EMI Emission Limits** → Grid Interface (GI) and Power Interface (PI)
- **Application** → Residential (C1) or Industrial (C2)

Grid Interface (GI)
- Conducted EMI Limits
 - (dBμV)
 - C1: Residential (CISPR Class B)
 - C2: Industrial (CISPR Class A)

Power Interface (PI)
- Conducted EMI Limits
 - (dBμV)
 - C1*: C1 & Unshielded Cables > 2m (CISPR Class A + 1dBμV)

Radiated EMI Limits
- (dBμV/m)
- C1: Residential (CISPR Class B)
- C2: Industrial (CISPR Class A)

- **EMI-Filter Design for Unshielded Cables > 2m and Resid. Applications (Cond. & Rad.)**
Conducted EMI-Filter

- Separate Cond. DM & CM EMI-Filter on DC-Side & DC-Minus Ref. EMI-Filter on AC-Side

- Low Add. EMI Filter Volume — 74cm³ for Each Filter (incl. Toroid. Rad. EMI Filter)
- Total Power Density Reduces — 15kW/dm³ (740cm³) → 12kW/dm³ (890cm³)
Conducted EMI - Experimental Results

- Measurements of the Cond. EMI Noise on the AC-Side (QP, with 50Hz AC-LISN)

→ Small 80uH CM-Ind. Added on AC-Side - (3cm³ of Add. Volume = 0.5% of Converter Vol.)
→ Conducted EMI with Unshielded Motor Cable Fulfilled
Measurement of Radiated EMI-Noise (1)

- Equipment Under Test (EUT) Placed on Wooden Table with Specified Arrangement
- CM Absorption Devices (CMAD) Terminate All Cables on AC- & DC-Side (Total \(l_{\text{cable}} \approx 1.5\) m)
- Measurement of Radiated Noise with Antenna in 3m Distance

Either Open-Area Test Site (OATS) or Special Semi-Anechoic Chamber (SAC) Needed

Alternative Pre-Compliance Measurement Method
Measurement of Radiated EMI-Noise (2)

- CM-Currents NOT Returning IN THE CABLE are Dominant Source of Radiation
- Relation Between Radiated Electric Field and CM-Currents (!)

\[
E = \begin{cases}
\frac{\mu_0 \cdot f \cdot I_{\text{cable}} \cdot I_{\text{cm}}}{r} & \frac{\lambda}{4} \leq l_{\text{cable}} \\
\frac{\mu_0 \cdot c_0}{4} \cdot \frac{I_{\text{cm}}}{r} & \frac{\lambda}{4} > l_{\text{cable}}
\end{cases}
\]

[Fischer FCC F-33-1] up to 250MHz
\(Z_{\text{nom}} = 6.3\Omega \)

- Max. Allow. El. Field Strength of 40dBuV/m \(\rightarrow \) Max. CM-Current of 3.5μA (11dBuA)
- Current Probe Impedance of 6.3Ω (F-33-1) \(\rightarrow \) Max. Noise Volt. of 26dBuV @ Test Receiver
Radiated EMI-Filter Design

- Single-Stage HF CM-Filter on DC-Side and AC-Side
- Plug-On CM-Cores (NiZn-Ferrites) \(\rightarrow\) Low Parasitics & Good HF-Att. up to 1GHz

\[C_{Y2,DC} \text{ (on the back)} \]

\[L_{HF} \]

\(\rightarrow\) Additional EMI Filter Volume Already Considered with Conducted EMI Filter

\(\rightarrow\) Total Power Density Slightly Reduces — 15kW/dm\(^3\) \(\rightarrow\) 12kW/dm\(^3\)
Experimental Results - Radiated EMI

- Y-Inverter Placed in Metallic Enclosure → Emulate Housing, but UNshielded Cables (!)
- Measurement Setup → According IEC 61800-3
- Alternative Measurement Principle → Conducted CM-Current Instead of Radiation

→ Already Noticeable Noise Floor
→ HF-Emissions Well Below Equivalent EMI-Limit → Next Step: Verification Using Antenna
Current Source Inverter (CSI) Topologies

- **Phase Modular Concept** → **Y-Inverter** (Buck-Stage / Current Link / Boost-Stage)
- **3-Φ Integrated Concept** → **Buck-Stage & Current DC-Link Inverter**

→ **Low Number of Ind. Components** & **Utilization of Bidir. GaN Semicond. Technology**
3-Φ Integrated Buck-Boost CSI

- **Bidirectional/Bipolar Switches** → **Positive DC-Side Voltage for Both Directions of Power Flow**

- **Monolithic Bidir. GaN Switches** → **Factor 4 Reduction of Chip Area Comp. to Discrete Realization**

Source: Panasonic Ideas for Life
600V GaN Monolithic Bidir. Switch (M-BDS)

- **Power America Project** — Based on Infineon’s CoolGaN™ HEMT Technology ($R_{DS(on)} = 70\,\Omega$)
- **Dual-Gate Device** / **Controllability of Both Current Directions**
- **Bipolar Voltage Blocking Capability** | Normally On or Off

- Analysis of 4-Quadrant Operation of $R_{DS(on)} = 140\,\Omega$ Sample @ ±400V
3-Φ-Integrated Buck-Boost CSI

- "Synergetic" Control of Buck-Stage & CSI Stage
- 6-Pulse-Shaping of DC Current by Buck-Stage → Allows Clamping of a CSI-Phase

- Switching of Only 2 of 3 Phase Legs → Reduction of Sw. Losses by \(\approx 86\% \) (!)
3-Φ Integrated Buck-Boost CSI

- “Synergetic” Control of Buck-Stage & CSI Stage
- 6-Pulse-Shaping of DC Current by Buck-Stage → Allows Clamping of One CSI-Phase

- Operation for 30° Phase Shift of AC-Side Voltage & Current
Future Research

- Advanced DC/AC Topologies incl. CM-Filtering
- Extension of 2/3-PWM to Bipolar DC-Link Voltage 3-Φ AC/AC Converter
- Multi-Objective Design & Comparative Evaluation

- Partial Use of “Normally-On” Switches for Freewheeling in Case of Auxiliary Power Loss
Remark

3-Φ AC/AC Matrix Converter

- **Indirect Matrix Converter (IMC)**
 - CSI GaN M-BDS AC/DC Front-End
 - ZCS Commutation of CSI Stage @ $i_{DC}=0$
 - No 4-Step Commutation

- **Direct Matrix Converter (CMC)**
 - 4-Step Commutation
 - Exclusive Use of GaN M-BDSs

- Higher # of Switches Compared to CMC
- Lower Cond. Losses @ Low Output Voltage
- Thermally Critical @ $f_{out} \rightarrow 0$

- Thermally Critical @ $f_{out} \approx f_{in}$
3-Φ PFC Rectifier System

Synergetic Control
Matrix-Type Isolated Topology

Source: Porsche Mission E Project
Selected EV Charger Topology

- Isolated Controlled Output Voltage
- Buck-Boost Functionality & Sinusoidal Input Current
- Applicability of 600V GaN M-BDSs
- High Power Density / Low Costs

→ Conventional / Independent OR “Synergetic Control” of Input & Output Stage
Conventional vs. “Synergetic” Control

- **1/3-Modulation** → Significant Red. of Losses of the Power Switches Comp. to 3/3-PWM

- **Conduction Losses** ≈ -80%
- **Switching Losses** ≈ -70%

→ Operating Point Dependent Selection of 1/3-PWM OR 3/3-PWM for Min. Overall Losses
AC/DC Stage Transition to Full-Boost Operation

- Different Operating Regimes → Synergetic Partial-Boost Full-Boost

→ Intermediate 2/3-Operation for Limiting DC-Link Center Point Current (Low DC-Cap.)
Isolated Matrix-Type Rectifier
Isolated 3-Φ Matrix-Type PFC Rectifier (1)

- Based on Dual Active Bridge (DAB) Concept
- Opt. Modulation \(t_1 \ldots t_4 \) for Min. Transformer RMS Curr. & ZVS or ZCS
- Allows Buck-Boost Operation

- Equivalent Circuit
- Transformer Voltages / Currents
Isolated 3-Φ Matrix-Type PFC Rectifier (2)

- Efficiency $\eta = 98.9\%$ @ 60% Rated Load (ZVS)
- Mains Current $THD_i \approx 4\%$ @ Rated Load
- Power Density $\rho \approx 4kW/dm^3$

$P_0 = 8 \text{ kW}$
$U_{IN} = 400V_{AC} \rightarrow U_O = 400V_{DC}$
$f_s = 36kHz$

$\approx 99\%$

$900V / 10m\Omega$ SiC Power MOSFETs
Opt. Modulation Based on 3D Look-Up Table
3D-Packaging / Heterogeneous Integration

- **System in Package (SiP) Approach**
- **Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management**
- **Very High Power Density (No Bond Wires / Solder / Thermal Paste)**
- **Automated Manufacturing**

- **Future Application Up to 100kW (!)**
- **New Design Tools & Measurement Systems (!)**
- **University / Industry Technology Partnership (!)**

Source: VICOR

ETH Zürich
Monolithic 3D-Integration

- GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology
 - 9 Dual-Gate GaN AC-Switches
 - DBM Gate Drive Transmitter Chip & Isolating Couplers
 - Ultra Compact → 25 x 18 mm² (600V, 10A – 5kW Motor)

Source: Panasonic ISSCC 2014
- **Future Experimental Analysis**

- No Access to Inner Details / Only Terminal Waveforms Available for Measurement (!)

- Convergence of Measurement & Simulation → “Augmented Reality” Oscilloscope
 - Measured Signals & Simulated Inner Voltages/Currents/Temp. Displayed Simultaneously
 - Automatic Tuning of Simulation Parameter Models for Best Fit of Simulated/Measured Waveforms
PCB-Based 3-Port Resonant GaN DC/DC Converter

- Single Transformer & Decoupled Power Flow Control
- Charge Mode PFC → HV (250...500V) SRC DCX / Const. f_{sw}, Min. Series Inductance / ZVS
- Drive Mode HV → LV (10.5...15V) 2 Interleaved Buck-Converters / Var. f_{sw} / ZVS
- $P = 3.6kW$

![Diagrams illustrating the converter's components and operation]

- Peak Efficiency of 96.5% in Charge Mode / 95.5% in Drive Mode

$\approx 16 \text{ kW/dm}^3$
X-Technology #5

Ceramic Capacitors
HF (NiZn) Magnetics
HF Magnetic Materials & Ceramic Capacitors

- **High Performance Factor of Low Permeability Magnetic Materials for 2...20MHz**
- **Volumetric Efficiency (\(\mu F/cm^3\)) Improvement of MLCCs Exceeds Moore's Law (!)**
- **Hybrid Ind./Cap. Converter Concepts for Min. Magnetic Energy Storage Requirements**

- **Performance Factor** \(B \cdot f\) Indicates Power Handling Capability @ Const. Loss Density & Core Volume

Source: A.J. Hanson, 2016

Source: R. Pilawa, 2017
X-Technology #6

Automated Design
Digital Twin / Industry 4.0
Digital Signal & Data Processing

- Exponentially Improving uC / Storage Technology (!)
- Extreme Levels of Density / Processing Speed
- Software Defined Functions / Flexibility
- Cont. Relative Cost Reduction

Moore's Law

- Fully Digital Control of Complex Systems
- Massive Computational Power → Fully Automated Design & Manufacturing / Industrial IoT (IIoT)
Automated Design Roadmap

- **State-of-the-Art**
 - User Defined Models and Simulation / Fragmented

- **Augmented Design**
 - Suggestion of Design Details Based on Previous Designs

- **Assisted Design**
 - Support of the User with Abstracted Database of Former Designs

- **Autonomous Design → Design 4.0**
 - Independent Generation of Full Designs for Final Expert Judgement

- **End-to-End Horizon of Modeling & Simulation**
- **Design for Cost / Volume / Efficiency Target / Manufacturing / Testing / Reliability / Recycling**

- **AI-Based Summaries → No Other Way to Survive in a World of Exp. Increasing # of Publications (!)**
Scaling Law – Power Electronics 4.0

- Metcalfe's Law
 - Moving from Hub-Based Concept to Community Concept Increases Value Exponentially (\(\sim n(n-1)\) or \(\sim n \log(n)\))
 - Automated Design / Digital Control / Digital Twin
Conclusion
Summary

- S-TCM Full ZVS Inverters
- Multi-Level/Cell Inverter Topologies
- Buck-Boost Inverter w/ Integrated Output Filter
- Inverter Motor Integration

- Low On-Resistance & High Sw. Speed SiC / GaN
- Monolithic Bidirectional GaN
- Integration of Switch / Gate Drive / Sensing / Monitoring
- SiC/GaN 4.0
S-Curve of Power Electronics

- **Power Electronics 1.0 → Power Electronics 4.0**
- Identify “X-Concepts” / “Moon-Shot” Technologies
- **10x Improvement NOT Only 10%!**

Key Concepts (Waves):

1. **WBG Semiconductors**
2. **Multi-Cell/Level Concepts**
3. **Functional Integration**
4. **3D-Packaging/Integration**
5. **MLCC & HF Mag. Materials**
6. **Digitalization / IIoT**

Timeline:

- **1958:** SCR / Diodes
- **2015:** Solid-State Devices
- **2025:** Super-Junct. Techn. / WBG

Technologies Evolution:

- **Power MOSFETs & IGBTs**
- **Circuit Topologies**
- **Microelectronics**
- **Modulation Concepts**
- **Control Concepts**

Effort / Time:

- **Emerging**
- **Established**
- **Mature**

Ethzürich

PowerAMerica
Comparison to “Moores Law”

- “Moore’s Law” Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
- Complexity for Min. Comp. Costs Increases approx. by Factor of 2 / Year

Definition of “η*, ρ*, σ*, f_P* – Node” Must Consider Conv. Type / Operating Range etc. (!)
Future Development

- Commoditization / Standardization
- Extreme Cost Pressure (!)

“There is Plenty of Room at the Top” → Medium Voltage/Frequency Solid-State Transformers

Power-Supplies on Chip ← “There is Plenty of Room at the Bottom”

- Key Importance of Technology Partnerships of Academia & Industry
Thank you!
Appendix A

Accurate Measurement of SiC/GaN Power Semiconductor On-State & Switching Losses
On-State Voltage Measurement (1)

- **Device / Load Current / Gate Voltage / Junction Temp. → On State-Resistance $R_{DS(on)}$**

$R_{DS(on)} = \frac{v_{DS(on)}}{i_L}$

- **Decoupling High Blocking Voltage and (Very) Low On-State Voltage ($\approx 1V \ll BV_{DS}$)**
On-State Voltage Measurement (2)

- **High Accuracy** → Compensation of Decoupling Diode Forward Voltage
- **Fast Dyn. Response** → Valid Measurement 50ns After Turn-On

Example — Dyn. $R_{DS(on)}$ of GaN HEMTs → 2x $R_{DS(on)}$ @ 100kHz - 0.6BV$_{DS}$
Switching Loss Measurement

- **Heat-Sink Temp.-Based Transient Calorim. Method → 15 min / Measurement**

- **Case Temp.-Based Ultra-Fast Method → 15 sec / Measurement**
Example Measurement Results

- **650V GaN (ZVS)**

 - 200V Si vs. GaN (Hard-Sw. & ZVS)

- **1.2kV SiC (Hard-Sw.)**

- **200V Si vs. GaN (Hard-Sw. & ZVS)**

![Graph of Switched Voltage Slope vs. Current]

![Graph of Switching Losses vs. Current]

![Graph of Switching Losses vs. Voltage]

![Graph of Switching Losses vs. Time]
Appendix B

T-Type M-BDS Topology
Integr. Active Filter PFC Rectifier
Swiss Rectifier
Remark

T-Type PFC Rectifier Topology

- Application of 600V M-BDSs @ $U_{pn} = 800V$ in Combination w/ 1200V SiC MOSFETs
- Hard-Switching Cont. Cond. Mode (CCM) or ZVS TCM Operation

- Max. Power Density | 98.4% Efficiency @ CCM w/ $f_{sw} = 550kHz$
Non-Sinusoidal Mains Current

\(P_0 = \text{const. Required} \)

\(3\Phi \) Unfolder Front End

\(3^{\text{rd}} \) Harmonic Injection in Middle Phase

Basic Idea: M. Jantsch, 1997 (for PV Inv.)
IAF Rectifier Demonstrator

- Efficiency $\eta > 99.1\%$ @ 60% Rated Load
- Mains Current $THD_i \approx 2\%$ @ Rated Load
- Power Density $\rho \approx 4\text{ kW/dm}^3$

$P_D = 8$ kW
$U_N = 400\text{V}_{AC} \rightarrow U_0 = 400\text{V}_{DC}$
$f_S = 27\text{kHz}$

► SiC Power MOSFETs & Diodes
► 2 Interleaved Buck Output Stages
IAF Rectifier → Swiss Rectifier

- Controlled Output Voltage
- Sinusoidal Mains Current
- i_y Def. by KCL: E.g. $i_a - i_c$

► Low Complexity
Swiss Rectifier Demonstrator

- Efficiency $\eta = 99.26\%$ @ 60% Rated Load
- Mains Current $THD_I \approx 0.5\%$ @ Rated Load
- Power Density $\rho \approx 4\text{ kW/dm}^3$

$P_0 = 8 \text{ kW}$

$U_{N} = 400\text{V}_{AC} \rightarrow U_O = 400\text{V}_{DC}$

$f_S = 27\text{kHz}$

- SiC Power MOSFETs & Diodes
- Integr. CM Coupled Output Inductors (ICMCI)
— The END —