X-Technologies → Power Electronics 4.0

Johann W. Kolar ...

Swiss Federal Institute of Technology (ETH) Zurich
Power Electronic Systems Laboratory
www.pes.ee.ethz.ch

April 26, 2021
“X-Technologies” Driving Power Electronics 4.0

Abstract — Power Electronics is a key technology for all forms of generation and utilization of electric power in modern societies, ranging from renewable energy generation and all types of power supply applications including fast-charging of EVs and hyperscale datacenters to actuator systems like variable speed drives that consume 60% of all electric energy used in industry.

The progress in the area has been driven over the past 40 years by new power semiconductor concepts and corresponding circuit topologies and modulation/control concepts. After a 1st main step initiated by the introduction of the thyristor in 1958 and a 2nd step around 1985 triggered by the availability of Si bipolar and unipolar turn-off devices finally built as IGBTs and superjunction MOSFETs, lately a 3rd disruptive development step introduced wide bandgap devices, e.g. GaN power semiconductors dominating the low voltage arena and zero-recovery SiC diodes and power MOSFETs, which are offering exceptionally low on-resistance and high switching speeds up to unprecedented high voltages. Moreover, power electronics has massively benefitted from the parallel breathtaking development of digital signal processing which was adopted early for variable speed drive systems and since around 2005 is also regularly used in switch-mode power supplies.

Now we are at the beginning of a fascinating and even more dynamic 4th step of power electronics development and it is interesting to contemplate on the driving forces, in other words to identify the “X-technologies” and/or “moonshot technologies” of power electronics over the next decade. Starting from basic scaling laws, the talk identifies 4 core technologies potentially driving the disruption towards Power Electronics 4.0, namely wide-bandgap power semiconductors, multi-cell/level converter concepts, functional association and synergetic multi-stage converter control and finally advanced modelling and simulation and/or multi-objective design automation including digital twins, which are a key prerequisite for the introduction of Industry 4.0 concepts in Power Electronics.

Future power electronics converters have to be seen as intelligent systems, which are actively monitoring and diagnosing their source and load environment based on different types of models and actuations, aggregating data and distilling information, receiving data/updates from and reporting status information to the cloud, a type of system best denominated as Cognitive Power Electronics 4.0. Accordingly, we are at the advent of a fascinating next phase of highly dynamic development in power electronics, which will also fully conquer the very low voltage/power and the medium/high voltage domains.
Outline

► Introduction
► X-Concepts /“Moon-Shot” Technologies
► Power Electronics 4.0
► Conclusions
Introduction

Power Electronics Development Steps
S-Curve of Power Electronics

- Power Electronics 1.0 → Power Electronics 4.0
- Identify “X-Concepts” / “Moon-Shot” Technologies
- 10x Improvement NOT Only 10%!
X-Technology #1

Wide Bandgap Power Semiconductors
Low $R_{\text{DS(on)}}$ High-Voltage Devices

- **SiC MOSFETs / GaN HEMTs (Monolithic AC-Switch)**
- **Low Conduction Losses & ZVS**
- **High Efficiency**

\[
R_{\text{on}} = \frac{4V_B^2}{\varepsilon \mu_n n V_C^3}
\]

\[
R_{\text{on,SiC}} \approx \frac{1}{300} R_{\text{on,Si}}
\]

- **High Voltage Unipolar (!) Devices → Excellent Switching Performance**
SiC vs. Si Switching Behavior

- **SiC-MOSFETs** → Resistive On-State Behavior / Factor 10 Higher Sw. Speed
- **Si-IGBT** → Const. On-State Voltage Drop / Rel. Low Switching Speed

![Graphs showing comparison between SiC-MOSFET and Si-IGBT](source)

- **1200V 100A**
 Die Size: 25.6 mm²
 Source: Cree

- **1200V 100A**
 Die Size: 98.8 mm² + 39.4 mm²
 Source: Infineon

- **Extremely High di/dt & dv/dt** → Challenges in Packaging / EMI / Insulation Stress
Challenges
Circuit Parasitics

- Extremely High $\frac{di}{dt}$
- Commutation Loop Inductance L_s
- Allowed L_s Directly Related to Switching Time t_s →

$$L \frac{di}{dt} = u_L$$

$$L_s \leq \frac{\alpha U_i}{I_L} = \alpha t_s \frac{U_i}{I_L}$$

- **Advanced Packaging** & **Parallel Interleaving** for Partitioning of Large Currents
SiC vs. Si EMI Emissions

- Higher dv/dt \rightarrow Factor 10
- Higher Switching Frequencies \rightarrow Factor 10
- EMI Envelope Shifted to Higher Frequencies

$f_s = 10\, \text{kHz}$ & $5\, \text{kV/us for (Si IGBT)}$
$f_s = 100\, \text{kHz}$ & $50\, \text{kV/us for (SiC MOSFET)}$

- Higher Influence of Filter Component Parasitics & Couplings \rightarrow Advanced Design
SiC MOSFETs — Soft Switching

- TCM — Triangular Current Mode → Zero Voltage Turn-Off & Zero Voltage Turn-On (ZVS)
- Variation of Sw. Frequ. → Spreading of EMI Noise

- Only 33% Increase of Conduction Losses
- Requires Certain Voltage Headroom for Avoiding Very Low Sw. Frequencies
X-Technology #2

Multi-Level / -Cell Converters & Modularity
Scaling of Multi-Level Concepts

- Reduced Ripple @ Same (!) Switching Losses
- Lower Overall On-Resistance @ Given Blocking Voltage
- Application of LV Technology to HV

\[\Delta I_{\text{max},N} = \frac{1}{N^2} \Delta I_{\text{max},N=1} \]

\[\frac{\Delta U_{\text{C, max},N}}{U} = \frac{\pi^2}{32} \left(\frac{f_0}{f_S} \right)^2 \frac{1}{N^3} \]

- Scalability / Manufacturability / Standardization / Redundancy
SiC/GaN Figure-of-Merit

- Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties
- FOM Identifies Max. Achievable Efficiency @ Given Sw. Frequ.

$$FOM = \frac{1}{R_{on} \cdot Q_{oss}}$$

- Advantage of Multi-Level over 2-Level Converter Topologies
7-Level Flying Cap. 200V GaN Inverter

- DC-Link Voltage 800V
- Rated Power 2.2 kW / Phase
- 99% Efficiency → Natural Convection Cooling (!)

- High Effective Sw. Frequency (6 x 30kHz = 180kHz) → Small Filter Inductor L_0

260 W/in3
Quasi-2L & Quasi-3L Inverters

- Operation of N-Level Topology in 2-Level or 3-Level Mode
- Intermediate Voltage Levels Only Used During Sw. Transients

- Schweizer (2017)

- **Quasi-2L** & **Quasi-3L Inverters**

- **Clear Partitioning of Overall Blocking Voltage** & **Small Flying Capacitors**
- **Low Voltage/Low** $R_{\text{DS(on)}}$/Low S **MOSFETs** \rightarrow **High Efficiency** / **No Heatsinks** / **SMD Packages**
3-Φ Hybrid Multi-Level Inverter

- **Realization of a 99%++ Efficient 10kW 3-Φ 400V_{rms} Inverter System**
- **7-Level Hybrid Active NPC Topology / LV Si-Technology**

- 200V Si → 200V GaN Technology Results in 99.5% Efficiency
4.8MHz GaN Half-Bridge Module

- **Combination of Series & Parallel Interleaving**

- 600V GaN Power Semiconductors, $f_{sw} = 800\text{kHz}$
- Volume of $\approx 180\text{cm}^3$ (incl. Control etc.)
- H_2O Cooling Through Baseplate

- Operation @ $f_{out}=100\text{kHz}$ / $f_{S,\text{eff}}=4.8\text{MHz}$, 10kW, $U_{dc}=800\text{V}$

$\approx 820 \text{W/in}^3$
X-Technology #3

Functional Integration & Synergetic Association
Motivation

- **General / Wide Applicability**
 - Adaption to Load-Dependent Battery | Fuel Cell | Solar Panel Supply Voltage
 - VSDs → Wide Output Voltage / Speed Range

- No Additional Converter for Voltage Adaption → Single-Stage Energy Conversion
Example — Buck-Boost 3-Φ Inverter

- **Generation of AC-Voltages Using Unipolar Bridge-Legs**

- **Switch-Mode Operation of Buck OR Boost Stage** → Single-Stage Energy Conversion (!)
- **3-Φ Continuous Sinusoidal Output / Low EMI** → No Shielded Cables / No Insul. Stress
Boost-Operation $u_{an} > U_i$

- **Phase-Module**

- **Motor Phase Voltages**

- **Current-Source-Type Operation**

 - **Clamping of Buck-Bridge High-Side Switch** → **Quasi Single-Stage Energy Conversion**
Buck-Operation \(u_{an} < U_i \)

- **Phase-Module**

- **Motor Phase Voltages**

- **Voltage-Source-Type Operation**
- **Clamping of Boost-Bridge High-Side Switch** \(\rightarrow \) **Quasi Single-Stage Energy Conversion**
SiC 3-Φ Buck-Boost Inverter Demonstrator

- DC Voltage Range $400...750\text{V}_{\text{DC}}$
- Max. Input Current $\pm 15\text{A}$
- Output Voltage $0...230\text{V}_{\text{rms}}$ (Phase)
- Output Frequency $0...500\text{Hz}$
- Sw. Frequency 100kHz

Dimensions \rightarrow 160 x 110 x 42 mm3 $\star = 245 \text{ W/in}^3$
3-Φ Modular → 3-Φ-Integrated Buck-Boost CSI

- Modular-Inverter → Phase Modules w/ Buck-Stage | Current Link | Boost-Stage
- 3-Φ CSI → Buck-Stage V-I-Converter | Current DC-Link DC/AC-Stage

- Single Inductive Component & Utilization of Monolithic (!) Bidirectional GaN Switches
3-Φ Current Source Inverter (CSI) Topologies

- Bidirectional/Bipolar Switches → Positive DC-Side Voltage for Both Directions of Power Flow

- Monolithic Bidir. GaN Switches → Factor 4 (!) Reduction of Chip Area Comp. to Discrete Realization
600V GaN Monolithic Bidir. Switch

- **Power America Project** — Based on Infineon’s CoolGaN™ HEMT Technology \((R_{DS(on)} = 70 \text{m} \Omega) \)
- **Dual-Gate Device** / Controllability of Both Current Directions
- **Bipolar Voltage Blocking Capability** | Normally On or Off

- Analysis of 4-Quardant Operation of \(R_{DS(on)} = 140 \text{m} \Omega \) Sample @ ± 400V
3-Φ-Integrated Buck-Boost CSI

- "Synergetic" Control of Buck-Stage & CSI Stage
- 6-Pulse-Shaping of DC Current by Buck-Stage → Allows Clamping of a CSI-Phase

- Switching of Only 2 of 3 Phase Legs → Reduction of Sw. Losses by ≈ 86% (!)
3-Φ AC/AC Converter Topologies

- **Current DC-Link Topology**
 - Application of M-BDSs
 - Complex 4-Step Commutation
 - Advantageous Over Matrix Converters
 - Low Filter Volume

- **Voltage DC-Link Topology**
 - Standard Commutation
 - Defined Semiconductor Voltage Stress
 - Low-Complexity Bridge-Legs
 - Facilitates DC-Link Energy Storage

- **Challenging Overvoltage Protection**
- **Limited Control Dynamics**

- **High Input / Output Filter Volume**
Isolated 3-Φ Matrix-Type PFC Rectifier

- Based on Dual Active Bridge (DAB) Concept
- Optimal Modulation \((t_1...t_4)\) for Min. Transformer RMS Curr. & ZVS or ZCS
- Allows Buck-Boost Operation

► Equivalent Circuit
► Transformer Voltages / Currents
Isolated 3-Φ Matrix-Type PFC Rectifier

- Efficiency $\eta = 98.9\% @ 60\%$ Rated Load (ZVS)
- Mains Current $THD_I \approx 4\% @$ Rated Load
- Power Density $\rho \approx 4kW/dm^3$

$P_0 = 8$ kW
$U_{IN} = 400V_{AC} \rightarrow U_O = 400V_{DC}$
$f_S = 36kHz$

- 900V / 10mΩ SiC Power MOSFETs
- Opt. Modulation Based on 3D Look-Up Table

$\eta = 98.9\% @ 60\%$ Rated Load (ZVS)

$THD_I \approx 4\% @$ Rated Load

$\rho \approx 4kW/dm^3$

$P_0 = 8$ kW
$U_{IN} = 400V_{AC} \rightarrow U_O = 400V_{DC}$
$f_S = 36kHz$

$\eta = 98.9\% @ 60\%$ Rated Load (ZVS)

$THD_I \approx 4\% @$ Rated Load

$\rho \approx 4kW/dm^3$
X-Technology #4

3D-Packaging Automated Manufacturing
Multi-Level vs. 2-Level Inverter

- Example of Google Little Box Challenge
- Target: 2kW 1-Φ Solar Inverter with Worldwide Highest Power Density
- Comparative Analysis of Approaches of the Finalists

- $f_s = 140\text{kHz}$
- $f_{s,\text{eff}} = 6 \times 120\text{kHz} = 720\text{kHz}$

- 3D-Packaging / Integration Highly Crucial for Utilizing Multi-Level Advantages (!)

Source: R. Pilawa-Podgurski
Multi-Level vs. 2-Level Inverter

- **Example of Google Little Box Challenge**
- **Target:** 2kW 1-φ Solar Inverter with Worldwide Highest Power Density
- **Comparative Analysis of Approaches of the Finalists**

![Graph showing efficiency vs. power density comparison between multi-level and 2-level inverters.]

ETH Zürich

Little-Box 2.0
240 W/in³
97.4%

Illinois

215 W/in³
97.6%

- **3D-Packaging / Integration Highly Crucial for Utilizing Multi-Level Advantages (!)**

Source: R. Pilawa-Podgurski
3D-Packing / Heterogeneous Integration

- **System in Package (SiP) Approach**
- **Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management**
- **Very High Power Density (No Bond Wires / Solder / Thermal Paste)**
- **Automated Manufacturing**

- **Future Application Up to 100kW (!)**
- **New Design Tools & Measurement Systems (!)**
- **University / Industry Technology Partnership (!)**

Source: VICOR

- 2.1 in² and 34 W/in²
 - 72 Watts
 - 0.91" x 2.3"
- 0.57 in² and 105 W/in²
 - 60 Watts
 - 0.65" x 0.87"

- 1.26 in² and 26 W/in²
 - 33 Watts
 - 0.97" x 1.3"
- 0.57 in² and 105 W/in²
 - 60 Watts
 - 0.65" x 0.87"
Monolithic 3D-Integration

- GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology
 - 9 Dual-Gate GaN AC-Switches
 - DBM Gate Drive Transmitter Chip & Isolating Couplers
 - Ultra Compact \rightarrow 25 x 18 mm2 (600V, 10A – 5kW Motor)

5.0GHz Isolated (5kVDC) Dividing Coupler
X-Technology #5

Automated Design
Digital Twin / Industry 4.0
Digital Signal & Data Processing

- Exponentially Improving uC / Storage Technology (!)
 - Extreme Levels of Density / Processing Speed
 - Software Defined Functions / Flexibility
 - Cont. Relative Cost Reduction

- Fully Digital Control of Complex Systems
- Massive Computational Power → Fully Automated Design & Manufacturing / Industrial IoT (IIoT)

Source: Ostendorf & König / DeGruyter
Automated Design

- Based on Mathematical Model of the Technology Mapping
- Multi-Objective Optimization → Best Utilization of the "Design Space"
- Identifies Absolute Performance Limits → Pareto Front / Surface

- Clarifies Sensitivity $\Delta \tilde{p} / \Delta \tilde{k}$ to Improvements of Technologies
- Trade-Off Analysis
Automated Design

- Design Space Diversity
- Equal Performance for Largely Different Sets of Design Parameters (!)

- E.g. Mutual Compensation of Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
- Allows Optimization for Further Performance Indices (e.g. Costs)
Design Space Diversity - Example

- Design of a Medium-Frequency Transformer
- Wdg./Core Loss Ratio, Geometry, n etc. as Design Parameters
- Power Level & Power Density = const.

Source: T. Guillod / ETH

- Mutual Compensation Core & Winding Losses Changes
- Limit on Part Load Efficiency / Costs / Fixed Geometry → Restricts Diversity
Automated Design Roadmap

- **End-to-End Horizon** of Modeling & Simulation
- **Design for Cost / Volume / Efficiency Target / Manufacturing / Testing / Reliability / Recycling**

Autonomous Design → Design 4.0
- Independent Generation of Full Designs for Final Expert Judgement

Augmented Design
- Suggestion of Design Details Based on Previous Designs

State-of-the-Art
- User Defined Models and Simulation / Fragmented

Assisted Design
- Support of the User with Abstracted Database of Former Designs

- **AI-Based Summaries → No Other Way to Survive in a World of Exp. Increasing # of Publications (!)**
IIoT in Power Electronics

- **Digital Twin** → **Physics-Based “Digital Mirror Image”**
- **Digital Thread** → “Weaving” Real/Physical & Virtual World Together

- **Requires Proper Interfaces for Models & Automated Design**
- **Model of System’s Past/Current/Future State** → **Design Corrections / Prev. Maintenance etc.**
Smart Inverter Concept

- Utilize High Computing Power and Network Effects in the Cloud

Component — Converter — System — Application Level

Source: R. Sommer

Intelligent Gate Drive Unit
- Semiconductor protection (overcurrent, overvoltage, ...)
- Collecting and preprocessing of sensor data (current, voltage, temperature, ...)
- Semiconductor specific condition monitoring functions

Communication
- Communication protocol instead of on/off signals

Drive Controller
- Observer based condition monitoring functions
- Predictive maintenance functions
- Data processing and data compression
- Communication to customer automation and/or internet

Internet / Cloud
- Service and commissioning tools
- Algorithms for „Big Data“ analysis
- Smart documentation (e.g. video to support service)
- ...
Conclusion
S-Curve of Power Electronics

- **Power Electronics 1.0 → Power Electronics 4.0**
- Identify “X-Concepts” / “Moon-Shot” Technologies
- 10x Improvement NOT Only 10% !

#1 WBG Semiconductors
#2 Multi-Cell/Level Concepts
#3 Functional Integration
#4 3D-Packaging/Integration
#5 Digitalization / IIoT

- Power MOSFETs & IGBTs
- Circuit Topologies
- Microelectronics
- Modulation Concepts
- Control Concepts
- Super-Junct. Techn. / WBG
- Digital Power Modeling & Simulation

Performance

- Effort / Time

1958

IEEE PEMC

ETH Zürich
Future Development

- Commodityization / Standardization
- Extreme Cost Pressure (!)
- Power → „Energy”
- Converter → System
- Time → Life Cycle

“There is Plenty of Room at the Top” → Medium Voltage/Frequency Solid-State Transformers

Standard / Integrated Solutions

100kW

10W

System Applications

Power-Supplies on Chip ← “There is Plenty of Room at the Bottom”

- Key Importance of Technology Partnerships of Academia & Industry
My Sincere Congratulations!

PEMC

50+ Years
ANNIVERSARY
Thank you!