

Motor-Integrated Power Factor Corrected Single-to-Three-Phase AC/AC Converter Concepts

Michael Haider

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

VDE "Elektromechanische Antriebssysteme 2023"

November 9th, 2023

Motor-Integrated Power Factor Corrected Single-to-Three-Phase AC/AC Converter Concepts

Michael Haider, Dominik Bortis, Jonas Huber, Johann W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

VDE "Elektromechanische Antriebssysteme 2023"

November 9th, 2023

٠

•

•

•

•

•

•

ETH zürich

Motivation

- Reduction of Global Carbon Emissions Required
- **Transportation Sector Responsible for 14%** of CO₂ Emissions

→ Goal: Decarbonization and Implementation of a Sustainable Transportation Sector

- Transportation in **Europe** Approx.
- Transportation in **US** Approx.

Pantograph

25% of All Emissions 29% of All Emissions

Door Control System

- Railway Systems: Greenest and Cleanest Mode of Transport Performance Improvements Demanded Focus on **Pressurized Air Supply System** of Railway Vehicles Air Brake System **Door Control System** Pantograph Lifting **General Requirements** Compactness **High Efficiency** Reliability Redundancy
- \rightarrow Unique Operating Conditions

Application

- Oil-Free Scroll Compressor
- 7.5 kW @ 3700 rpm

- Charge Pressure Tank
 - e lank
- Variable Speed Operation
- Maximum System Performance
- AC-Operation (Grid)

280...530 Vrms

• Nominal Voltage

- 400 Vrms @ 50 Hz
- Tertiary Traction Transformer Winding
- Ensure Unity Power Factor Operation
- DC-Operation (Battery)

70....110 Vdc

- On-Board Battery
- Startup and Grid Interruption
- 1Φ AC/DC-to-3Φ AC Converter System
- Wide-Input Voltage Range
- Survive Grid Disturbances and Interruptions
- \rightarrow Ultra Compact 1 Φ AC-Supplied VSD System

Input Current $I_{\rm I}$ (Arms)

Challenge

- State-of-the-Art
- Electrical Energy Storage C_{DC}

- Avoid Electrolytic Capacitors (1ltr.) → Increased Lifetime
- ETH zürich —

 $\frac{1}{2} = \frac{1}{2} + \frac{1}$

Electrolytic-Less 1 AC-Supplied VSD System

ETH zürich

Motor-Integrated Power Pulsation Buffer (MPPB)

- State-of-the-Art
- Electrical Energy Storage **C**_{DC}

$$\Delta v_{\rm DC} = \frac{P_0}{2\pi \, 2f_{\rm G}} \, \frac{1}{\overline{v}_{\rm DC} \, C_{\rm DC}}$$

■ Avoid Electrolytic Capacitors (1ltr.) → Increased Lifetime

- Proposed MPPB Concept
- Mechanical Energy Storage J_{M}

$$\Delta \omega = \frac{P_0}{2\pi \, 2f_{\rm G}} \, \frac{1}{\bar{\omega} \, J_{\rm M}}$$

 \rightarrow Electrolytic-Less 1 Φ AC-Supplied VSD System

Outline

Part I: Single-Inverter Topology

Part II: Dual-Inverter Topology

SI – Topology

Two-Stage Implementation

■ I. PFC Rectifier

- Boost-Type
- Totem-Pole with Unfolder Leg
- Three Interleaved HF Legs
- Intermediate DC-Link
- Electrolytic-Less
- Nominal: 650 Vdc
- Maximum: 800Vdc
- \rightarrow 1.2 kV SiC MOSFETs
- II. Three-Phase Inverter
- Two-Level
- Voltage Source Inverter (VSI)

\rightarrow How to Control?

ETH zürich

SI - Control (1)

- **Control Objectives:** PFC Operation, DC-Link Voltage and Average Speed Control
- Implemented in Cascaded Fashion
- Based on Grid Power Feedforward and Inner Current Control Loops
- **Conventional Operation Proposed MPPB Operation** $\Delta v_{\rm DC} = \frac{P_0}{2\pi 2 f_{\rm G}} \frac{1}{\overline{v}_{\rm DC} C_{\rm DC}}$ $\Delta \omega = \frac{P_0}{2\pi \, 2f_{\rm G}} \, \frac{1}{\overline{\omega} \, J_{\rm M}}$ Mechanical Energy Storage J_M Electrical Energy Storage C_{DC} ٠ ٠ DC-Link Volt. $P_{M}^{*} = P_{G}^{*}$ $P_{\rm c}^*$ + P_{G}^{*} $-d_{\rm B}$ Speed Grid Cur. $-d_{\rm B}$ Grid Cur. G l_{G} $V_{\rm DC}^{*}$ - ω^* Control ► S_{UN} Control Control Control $- S_{UN}$ P_{M} $v_{\rm DC}$ $\overline{\omega}$ $\frac{v_{\rm G}}{2\hat{V}_{\rm G}^2}$ $\frac{v_{\rm G}}{2\hat{V}_{\rm G}^2}$ T_{G} MAF F ω MAF FV i_G $v_{\rm G}$ $p_{\rm G}$ $p_{\mathbf{G}}$ $P_{\rm M}^*$ DC-Link Volt. Motor Cur. $p_{\rm C}$ Motor Cur. Speed ^IMq Mq $V_{\rm DC}^{*}$ ω^* Control Control Control Control $\frac{3}{2}V_{\rm P}$ $v_{\rm DC}$ $\frac{3}{2}V_{\rm P}$

10/31

→ MPPB Operation: Achieved by High-Level Control Scheme Modifications

ETH zürich

ETH zürich

SI – Control (2)

- **Control Objectives:** PFC Operation, DC-Link Voltage and Average Speed Control
- Implemented in Cascaded Fashion ٠
- Based on Grid Power Feedforward and Inner Current Control Loops ٠

800

400

 $\overline{v}_{\rm G}$

 \rightarrow Verified by Circuit Simulation for $C_{DC} = 60 \,\mu\text{F} - \text{only } 8 \,\mu\text{F/kW}$

Performance Analysis

ETH zürich

SI – Comparative Phase Current Analysis

- Conventional System ($i_{Md} = 0 A$)
- Torque-Generating Current

 $i_{\mathrm{Mq}} = I_{\mathrm{M0}} = \frac{2P_0}{3V_{\mathrm{P}}} \sim T_{\mathrm{L}}$

- Electrolytic-Less MPPB ($i_{Md} = 0 A$)
- Torque-Generating Current

 $i_{\mathrm{Mq}} = I_{\mathrm{M0}} \left[1 + \cos(4\pi f_{\mathrm{G}} t) \right] \sim t_{\mathrm{M}}$

• dq-Transformation with $\varepsilon = p\overline{\omega} t$

Comparison

• Superposition: $i_{\text{Ma}} = -I_{\text{M0}} \left[\sin(p\overline{\omega} t) + \frac{1}{2}\sin(p\overline{\omega} t + 4\pi f_{\text{G}} t) + \frac{1}{2}\sin(p\overline{\omega} t - 4\pi f_{\text{G}} t) \right]$

 $2I_{M0}$

ightarrow Harmonic Components @ $p\overline{\omega}$, $p\overline{\omega}+4\pi f_{
m G}$ and $p\overline{\omega}-4\pi f_{
m G}$

SI – Phase Conduction Losses

- Harmonic Components: $p\overline{\omega}$, $p\overline{\omega} + 4\pi f_{\rm G}$ and $p\overline{\omega} 4\pi f_{\rm G}$
- Standing Waves for $p\overline{\omega} = 4\pi f_{\rm G}$ (100 Hz) and $p\overline{\omega} = 2\pi f_{\rm G}$ (50 Hz)
- Similar to Startup
- Asymmetric Phase Stresses

- Total Conduction Losses Remain
- → Degree of Freedom: Number of Pole Pairs *p*

→ Restricted Frequency Ranges

SI – Performance Analysis: Motor and Inverter

- M. Motor
- Conventional System $P_{VM0} = P_{VMnl} + \frac{3}{2}R_s I_{M0}^2$
- Electrolytic-Less MPPB $P_{VM} = P_{VMnl} + \frac{\bar{9}}{4}R_s I_{M0}^2$
- Relative Loss Increase + 25 %
- I. IGBT Inverter

 $P_{\rm VI} = 3V_{\rm f}I_{\rm PHavg} + 3f_{\rm Isw}k_1I_{\rm PHavg}$

- No Additional Losses High Total Losses
- II. MOSFET Inverter with dv/dt-Limitation (Miller Capacitor) $P_{\rm VI} = 3R_{\rm on}I_{\rm PHrms}^2 + 3f_{\rm Isw}(k_0 + k_1I_{\rm PHavg})$
- Relative Loss Increase + 17 %
- III. MOSFET Inverter with LC-Output-Filter
 - $P_{\rm VI} = 3R_{\rm on}I_{\rm PHrms}^2 + 3f_{\rm Isw}(k_0 + k_1I_{\rm PHavg} + k_2I_{\rm PHrms}^2)$
- Relative Loss Increase + 25%
- Peak Phase Current + 100%

ETH zürich

 \rightarrow Implement and Verify Hardware Demonstrator

Implementation and Verification

SI – **Implementation**

Motor Integration in Three Layers

ETH zürich

■ Losses:

 \rightarrow Drive System Performance: 0.91 kW/ltr. and 91.4% @ 7.5 kW - IES2 Compliant

703W (91.4%)

SI – Hardware Demonstrator

- Motor-Integrated Electrolytic-Less 1Φ AC-Supplied VSD System
- Time-Domain Waveforms at Nominal Operating Point
- Verification on Motor Test Bench (Specifically Developed)

- \rightarrow Demonstrator Matches Expected System Behavior
- \rightarrow Verify Design Models

ETH zürich

VDE

SI – Design Models

Loss Model

800

600

400

200

00

100

95

85

80 L

Efficiency η (%)

Drive System Losses P_{VDS} (W)

Conventional System ٠

 $V_{\rm DC} = 650 \, \rm V$

Electrolytic-Less MPPB 703 W (91.4%) •

2

2

Drive System Efficiency >90% for $P_0 > 5 \text{ kW}$ ٠

Measurement

MPPB without Elco

4

4

Mechanical Output Power P_0 (kW)

MPPB without Elco (32 m Ω Devices)

600W (92.6%)

 $P_{0,N}$

- EMI-Model
 - CISPR 11 / Class A •
 - DM-Noise: PFC Rectifier •
 - **CM-Noise:** Inverter •

 \rightarrow In-Depth Model Verification - 103 W of Additional Losses to Eliminate 1 ltr. of Electrolytic Capacitors

7.5 8

6

SI – DC-Link Voltage Ripple

- LF DC-Link Voltage Fluctuations: 35 V
- Caused by Disturbances ٠

- DC-Link Voltage Ripple matches Simulation ٠
- Increase $C_{\rm DC} = 60 \,\mu \text{F}$ ٠
- Increase $f_{sw} = 24 \text{ kHz}$ ٠
- \rightarrow Efficiency, Power Density or Cost Penalty

Delay Time Reduction: 23 V

Improve Controller Bandwidth ٠

div $f_{\rm BW,conv}$ $f_{\rm BW,imp}$ Magnitude (dB) CL' (Conventional) CL' (Improved) ■ ♦ Measurements -24 90 Phase (deg) -90 -180 -270 10^{2} 10^{3} 10^{1} 2.9k 4.7k 10^4 Frequency f(Hz)

Feedforward Term: 10V

-20

-40

0

10

Counteract Motor Magnetization Power

20

30

Time t (ms)

40

50

 \rightarrow Analyze Grid Interruption Sustainability **ETH** zürich

Current Source Based System

Shared Drift Region

SI – Current DC-Link: Topology

Monolithic Bidirectional GaN Transistor

- **Two-Stage Implementation**
- Current DC-Link
- 1AC PFC Current Source Rectifier (CSR)
- Three-Phase Current Source Inverter (CSI)

Specifications

- 1AC: 230V/50Hz
- Motor: 2.5kW @ 300rad/s

\rightarrow How to Control?

ETH zürich

SI - Current DC-Link: Control (1)

- **Control Objectives:** PFC Operation, DC-Link Current and Average Speed Control
- Implemented in Cascaded Fashion
- Based on Grid Power Feedforward and Inner Current Control Loops
- **Conventional CSI Operation** Proposed MPPB CSI Operation $\Delta i_{\rm DC} = \frac{P_0}{2\pi 2f_{\rm G}} \frac{1}{\bar{\iota}_{\rm DC} L_{\rm DC}}$ $\Delta \omega = \frac{P_0}{2\pi \, 2f_{\rm G}} \, \frac{1}{\overline{\omega} \, J_{\rm M}}$ Electrical Energy Storage L_{DC} Mechanical Energy Storage ٠ $P_{\rm G}^{*}$ $P_{\rm M}^{\ *} = P_{\rm G}^{\ *}$ DC-Link i_G Grid Cur. Speed Grid Cur. + $l_{\rm G}$ $I_{\rm DC}^{*}$ ω Control Cur. Control Control Control S₂ \boldsymbol{p} $\overline{\omega}$ $l_{\rm DC}$ $\frac{v_{\rm G}}{2\hat{V}_{\rm G}^2}$ $\frac{v_{\rm G}}{2\hat{V}_{\rm G}^2}$ $T_{\rm G}$ MAF F ω $T_{\rm G}$ MAF Fi i_G DC $p_{\rm G}^*$ $v_{\rm G}$ $p_{\rm G}$ $P_{\rm M}$ $I_{\rm Mq}^{*}$ $P_{\rm M}^{*}$ Motor Cur. DC-Link l_{Mq} Speed $p_{\rm L}^{*} + 2$ Motor Cur. p_{M} ω^* $I_{\rm DC}^*$ Control Control Cur. Control Control T_{G} ω $\frac{3}{2}V_{\rm P}$ $l_{\rm DC}$ $\frac{3}{2}V_{\rm P}$ T_{G}
 - → MPPB CSI Operation: Achieved by High-Level Control Scheme Modifications

ETH zürich

SI – Current DC-Link: Control (2)

- **Control Objectives:** PFC Operation, DC-Link Current and Average Speed Control
- Implemented in Cascaded Fashion
- Based on Grid Power Feedforward and Inner Current Control Loops

 \rightarrow MPPB Concept Enables CSI for 1AC Supplied Drives: $L_{DC} = 1mH - only 0.4 mH/kW$

— Part II Dual-Inverter (DI) Topology

25/31

ETH zürich

DI – Topology

- Dual-Inverter Implementation
- Avoids Boost Stage
- No Boost Inductor
- No HF Bridge-Legs
- Power Buffer Required
- Apply MPPB Concept
- Electrolytic-Less
- Implementation Effort
- Diodes
- IGBT Six-Pack Modules
- Film Capacitors
- OEW PMSM

 \rightarrow Investigate Operation to Ensure $p_2(t) = 0$ W

DI – Operation

• Ensure $p_2(t) = \underline{v}_2 \cdot \underline{i}_M = 0 W$ (Space Vector Representation)

• Ensure $v_2 = 0$ V and $\underline{v}_1 = j V_P$ \hat{V}_G \hat{V}_G \hat{V}_I V_G \hat{V}_1 V_D V_1 V_1

d

• Case I: $V_{\rm P} < v_{1\rm max}(t) = 0.5 |v_{\rm G}(t)|$

• VSI 2 Provides No Voltage

 $-\hat{V}_{G}$

ETH zürich

- Zero d-Current Component
- \rightarrow Performance Analysis

- → Select $|\underline{v}_1| = v_{1 \text{max}}$ and $\underline{v}_1 \parallel \underline{i}_M$
- VSI 2 Provides Required Voltage Difference but No Active Power
- Non-Zero d-Current Component

DI – Phase Current Stress

- Implementation With Electrolytic Capacitors
- For $V_{\rm P} = V_0 = 125 \,\mathrm{V} \mathrm{Grid} \,\mathrm{Voltage} \,\mathrm{Limit}$
- $I_{\rm PH0rms} = 33 \, {\rm A}$

ETH zürich

- Electrolytic-Less MPPB Implementation
- For $V_{\rm P} = V_0 = 125 \,\rm V$
- $I_{\rm PHrms} = 41 \, {\rm A}$

For $V_{Gmin} = 360 \text{ Vrms}$

- Electrolytic-Less MPPB Implementation
- For $V_{\rm P} = 2V_0 = 250\,{\rm V}$
- $I_{\rm PHrms} = 24 \, {\rm A}$

VDE

DI – **Performance Evaluation**

- Degree of Freedom: Motor Voltage V_P
- Influence on
- Secondary DC-Link Voltage V_{DC2}
- Phase Current Stress *I*_{PHrms}

Performance Indices

• Switching Losses $\varsigma = \sum_{\mathbf{r}} \langle \boldsymbol{v}_{\mathbf{T},\mathbf{k}} + \boldsymbol{i}_{\mathbf{T},\mathbf{k}} \rangle_{T_{\mathbf{G}}}$

 $2V_0$

Motor Voltage $V_{\rm P}$

 $3V_0$

 $2.5V_{0}$

 $1.5V_{0}$

 V_0

- System Specifications
- Mech. Output Power 7.5 kW
- Mech. Speed 3700 rpm
- Grid Voltage
- Grid Frequency 50 Hz
- Switching Frequency 16 kHz
- Normalized to State-of-the-Art (with Electrolytic Capacitor)
- AVG Conduction Losses: -45%
- RMS Conduction Losses: -45%
- Switching Losses: -15%

 \rightarrow Semiconductor Loss Reduction up to 30% @ $V_{\rm P} = 2 V_0$

.

360...480 Vrms

ETH zürich

DI - Control

- **Control Objectives:** PFC Operation, DC-Link Voltage and Average Speed Control
- Implemented in Cascaded Fashion
- Based on Grid Power Feedforward and Voltage Division

 \rightarrow Verified by Circuit Simulation for $\textit{C}_{DC2}=50~\mu\text{F}$ - only 6. 7 $\mu\text{F}/kW$

VDE

Results & Conclusions

Part I: Single-Inverter Topology

- MPPB Concept
 - Elim. Electrolytic Capacitors in 1Φ AC-Supplied VSD Systems

 G_1 $\bullet \to I$ G_2

o S₂

- Performance Analysis: Motor and Inverter
- Motor-Integrated Hardware Demonstrator
 - Achieving 8µF/kW within the DC-Link
 - Drive System Perf.: 0.91 kW/ltr. and 91.4% @ 7.5 kW
 - In-Depth Validation
- Current-Source Based System
 - Monolithic Bidirectional GaN Transistor
 - Protection of Motor Winding System

Part II: Dual-Inverter Topology

- Dual-Inverter Employing the MPPB Concept
 - Low Effort Implementation
 - Analysis of Operation and Control Structure
 - Semiconductor Loss Reduction of up 30%

Thank You!

November 9th, 2023

