A 150 000-r/min Bearingless Slice Motor

P. Püntener,
M. Schuck,
D. Steinert,
T. Nussbaumer,
J. W. Kolar

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
A 150 000 rpm Bearingless Slice Motor

Pascal Puentener, Student Member, IEEE, Marcel Schuck, Member, IEEE, Daniel Steinert, Student Member, IEEE, Thomas Nussbaumer, Member, IEEE, and Johann W. Kolar, Fellow, IEEE

Abstract—In this paper, the design and operating principle of a slotless bearingless slice motor for high rotational speeds is presented. The performance of the proposed concept is evaluated using an experimental prototype. Measurement results demonstrate a stable dynamic behavior during acceleration and an achievable rotational speed of 150 000 rpm, which is, to the knowledge of the authors, the highest rotational speed attained by a bearingless slice motor to date. The system performance is outlined at its maximum speed and power loss measurements are carried out over the entire speed range.

Index Terms—bearingless motor, slice motor, high rotational speed, slotless, toroidal winding

I. INTRODUCTION

RECENT years have shown a trend in electrical drive systems toward high power densities achieved by increased rotational speeds. Magnetically levitated motors are ideally suited for high speed applications due to their lack of mechanical bearings and the associated friction losses. One of such motors has been reported to operate at rotational speeds as high as 400 000 rpm [1]. It consists of a cylindrical rotor and two radial as well as one axial magnetic bearing unit.

In this paper, a bearingless slice motor is presented that consists of a single magnetic bearing unit integrated into the motor for stabilization of the rotor in radial direction. The remaining three degrees of freedom, namely axial displacement and tilting, are stabilized passively by restoring reluctance forces caused by the deflection of the rotor [2], [3], [4]. To achieve passive stability in the tilting direction, the diameter of the rotor is required to be significantly larger than its height. The slice motor topology yields a more compact and simple construction and is already used in industrial applications, such as high-purity mixers [5], pumps [6], turbocompressors and artificial hearts [7], [8].

As the stator of such a machine is usually slotted, fluctuations of the magnetic field exist, which cause significant losses at high rotational speeds [9]. To reduce these losses, a slotless stator is advantageous and has been explored in [10], [11]. A schematic view of the resulting motor topology is shown in Fig. 1. The highest rotational speed achieved by a bearingless slotless slice motor has been reported in [10] to be 115 000 rpm at a circumferential speed of 192.6 m/s, making it suitable for compressor applications.

To further increase the maximum achievable rotational speed, a scaling analysis of such a motor to a smaller size and the associated design procedure were outlined in a previous study [12]. As a proof of concept, the implementation of a motor reaching 150 000 rpm is demonstrated in this work. Its performance is evaluated experimentally based on measured results. Due to the high rotational speed, a potential application area of the presented machine is in optical scanning systems [13].

II. OPERATING PRINCIPLE

A. Passive Stability

According to the principle of a bearingless slice motor, the three degrees of freedom of the diametrically-magnetized rotor in axial and tilting directions are passively stabilized [14], [15]. As illustrated in Fig. 2(a), the air gap between the rotor and the inner diameter of the stator core is increased if the rotor is deflected in axial direction or tilted, causing reluctance forces that counteract the displacement. To characterize the bearing properties, the passive stiffnesses in the corresponding directions are specified as

\[\begin{align*}
c_d &= -\frac{\partial F_{b,d}}{\partial d}, & c_q &= -\frac{\partial F_{b,q}}{\partial q}, & c_z &= -\frac{\partial F_{b,z}}{\partial z}, \\
c_{\alpha} &= -\frac{\partial T_{b,\alpha}}{\partial \alpha}, & \text{and} & c_{\beta} &= -\frac{\partial T_{b,\beta}}{\partial \beta},
\end{align*}\]

where \(d\) and \(q\) represent the deflection of the rotor along its direct and quadrature axis, respectively. The angles \(\alpha\) and \(\beta\) correspond to tilting around the \(q\)- and \(d\)-axis, respectively. The rotor needs to be stabilized actively in radial direction.

B. Active Bearing and Drive

Due to the constant air gap length, the magnetic field in the air gap caused by the magnetization of the rotor can be assumed to be ideally sinusoidal and oriented in radial direction

\[\vec{B}_{r,\varphi z} \approx B_r \cos(\varphi - \vartheta) \hat{e}_r,\]

where \(\vartheta\) and \(\varphi\) denote the rotor angle and the circumferential variable in cylinder coordinates, respectively.
where in radial direction, i.e., perpendicular to the direction of magnetization in axial direction lags the phase currents geometrically by resulting in a Lorentz force [11].

In addition to the Lorentz force, Maxwell forces are caused by exciting as generated by the permanent magnetization of the rotor only have been added to the figure.

The air gap field is strengthened on one side of the rotor and weakened on the other. The resulting Maxwell force is added to the Lorentz force [11].

The two aforementioned cases of active torque and radial bearing force generation are depicted in Fig. 2(b) together with the corresponding drive currents (black) and bearing currents (blue). An exemplary current excitation to generate a force in y-direction is shown (i.e. $\varphi_b = 90^\circ$). The magnetic flux lines as generated by the permanent magnetization of the rotor only have been added to the figure.

In a system with combined windings, such as the motor presented here, the coils carry both bearing and drive currents. Consequently, a drive torque and radial bearing forces can be generated using the same coils [16]. Following the notation of Fig. 2(b), the currents can be written as

$$i_1 = i_{b1} + i_{d1} \quad i_4 = i_{b1} - i_{d1}$$
$$i_2 = i_{b2} + i_{d2} \quad i_5 = i_{b2} - i_{d2}$$
$$i_3 = i_{b3} + i_{d3} \quad i_6 = i_{b3} - i_{d3},$$

where the subscripts b and d denote bearing currents and drive currents, respectively. As hold, the coils can be connected to the supplying power electronic converter as two three phase systems with floating star points, as shown in Fig. 3. A more detailed explanation can be found in [11].

III. PROTOTYPE OF THE HIGH SPEED MOTOR

The design parameters and components of the implemented motor prototype are described in this section. A more detailed analysis of possible designs as well as the optimization of the passive and active motor properties is outlined in [12]. Figure 4 shows an annotated photograph of the implemented high speed slotless slice motor and Table I summarizes the relevant dimensions and parameters.

A. Stator

The six coils are wound toroidally around the ring-shaped stator core. The latter is manufactured from Metglas 2605SA1
The achievable peripheral speed is given as

$$n = \frac{155000 \text{rpm}}{2 \pi}$$

where the bearing as well as the drive currents. The rotational speed half bridges accordingly. Field oriented control is applied for the controller then sets the duty cycles of the PWM-modulated current controller. The reference bearing currents are calculated based on the difference between the reference position and that no significant signal component is present at the rotational frequency, indicating that the rotor is sufficiently well balanced. The axial rotor displacement was measured using a laser distance sensor to be in the range of 20 μm at maximum speed (e). The maximum achieved frequency is 2500 Hz, corresponding to a rotational speed of 150 000 rpm, as shown in the flux signal measured by a Hall sensor (f). Higher speeds have not been tested to avoid destruction of the rotor due to excessive centrifugal loading.

The aforementioned deflections of the rotor from its equilibrium position are sufficiently low to allow for stable operation of the motor over the entire speed range and high repeatability of the results. If decreased vibrations of the rotor are required for the intended application, such as in high precision optical scanning system, this can be achieved by more accurate vibration control. Due to the high passive axial stiffness (see Table I), stable levitation of the rotor is possible for an additional axial load of up to 800 g (≈ 30 times the rotor mass). An axial force of 12 N is required to completely remove the rotor from the stator bore.

IV. PERFORMANCE EVALUATION OF THE MOTOR

A. Acceleration and Maximum Speed

To test the performance of the motor, the rotor was accelerated from standstill to 150 000 rpm. Trace (a) of Fig. 5 shows the Hall sensor signal, which is used to determine the rotor angle, during such a speedup. Its frequency is directly proportional to the rotational speed. The magnitude of the signal is decreased with increasing rotational speed due to the employed low-pass filter, which is necessary to suppress high frequency noise. The maximum speed of 150 000 rpm is reached after 2.3 s, corresponding to an acceleration of 65 000 rpm/s. A detailed view of the measurements at maximum speed is shown in the lower part of Fig. 5. The motor requires an RMS phase current of 5.3 A to overcome the motor losses and to stabilize the rotor (b). The position signals (c) and (d) show that the rotor deviates at most 240 μm from its center position and that no significant signal component is present at the rotational frequency, indicating that the rotor is sufficiently well balanced. The axial rotor displacement was measured using a laser distance sensor to be in the range of 20 μm at maximum speed (e). The maximum achieved frequency is 2500 Hz, corresponding to a rotational speed of 150 000 rpm, as shown in the flux signal measured by a Hall sensor (f). Higher speeds have not been tested to avoid destruction of the rotor due to excessive centrifugal loading.

The aforementioned deflections of the rotor from its equilibrium position are sufficiently low to allow for stable operation of the motor over the entire speed range and high repeatability of the results. If decreased vibrations of the rotor are required for the intended application, such as in high precision optical scanning system, this can be achieved by more accurate vibration control. Due to the high passive axial stiffness (see Table I), stable levitation of the rotor is possible for an additional axial load of up to 800 g (≈ 30 times the rotor mass). An axial force of 12 N is required to completely remove the rotor from the stator bore.

TABLE I: Dimensions of the Prototype

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotor magnet diameter</td>
<td>20</td>
<td>mm</td>
</tr>
<tr>
<td>rotor outer diameter</td>
<td>22</td>
<td>mm</td>
</tr>
<tr>
<td>rotor height</td>
<td>9</td>
<td>mm</td>
</tr>
<tr>
<td>rotor mass</td>
<td>26</td>
<td>g</td>
</tr>
<tr>
<td>stator outer diameter</td>
<td>41</td>
<td>mm</td>
</tr>
<tr>
<td>stator height</td>
<td>8</td>
<td>mm</td>
</tr>
<tr>
<td>protective sleeve thickness</td>
<td>0.8</td>
<td>mm</td>
</tr>
<tr>
<td>stainless steel ring thickness</td>
<td>1</td>
<td>mm</td>
</tr>
<tr>
<td>magnetic air gap</td>
<td>4.5</td>
<td>mm</td>
</tr>
<tr>
<td>mechanical air gap</td>
<td>0.6</td>
<td>mm</td>
</tr>
<tr>
<td>torque constant</td>
<td>23.2</td>
<td>mN/m</td>
</tr>
<tr>
<td>bearing constant</td>
<td>1.48</td>
<td>N/A</td>
</tr>
<tr>
<td>tilting stiffness around d</td>
<td>0.95</td>
<td>mN/mm</td>
</tr>
<tr>
<td>tilting stiffness around q</td>
<td>2.1</td>
<td>mN/mm</td>
</tr>
<tr>
<td>axial stiffness</td>
<td>2.26</td>
<td>N/mm</td>
</tr>
<tr>
<td>coil resistance</td>
<td>112</td>
<td>mΩ</td>
</tr>
<tr>
<td>coil inductance</td>
<td>25.6</td>
<td>μH</td>
</tr>
<tr>
<td>number of turns per winding</td>
<td>112</td>
<td>–</td>
</tr>
<tr>
<td>maximum input power</td>
<td>600</td>
<td>W</td>
</tr>
</tbody>
</table>

The final version of record is available at http://dx.doi.org/10.1109/TMECH.2018.2873894

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
To the small radius to be small, as their dependency on the radius is given by rotational speed had been reached. Measurements were taken once the steady state at the desired its rotational speed was increased in steps of 10,000 rpm.

B. Losses

To examine the motor losses, the rotor was levitated and its rotational speed was increased in steps of 10,000 rpm. Measurements were taken once the steady state at the desired rotational speed had been reached.

The overall motor losses \(P_{\text{mot}} \) were measured at the output of the controller. To do so, four phase currents and the corresponding voltages were measured using a Yokogawa WT1804E high precision power analyzer. The overall losses were calculated from the measurements as

\[
P_{\text{mot}} = u_{13}i_1 + u_{53}i_5 + u_{24}i_2 + u_{64}i_6,
\]

where the indices denote the respective phase of the motor.

The occurring copper losses \(P_{\text{cu}} \) were calculated using the measured phase currents and the corresponding resistances \(R_n \) as

\[
P_{\text{cu}} = \sum_{n=1}^{6} R_n i_{\text{rms},n}^2.
\]

To identify the windage losses \(P_{\text{wind}} \), the aforementioned measurements were repeated over the entire speed range with the rotor being spun in vacuum at a pressure of \(\leq 4 \text{ mbar} \). Due to the small radius \(R \) of the rotor, these losses are expected to be small, as their dependency on the radius is given by

\[
P_{\text{wind,rad}} \propto \omega^3 R^4 \quad \text{and} \quad P_{\text{wind,ax}} \propto \omega^3 R^6,
\]

where \(P_{\text{wind,rad}} \), \(P_{\text{wind,ax}} \) are the air friction losses caused by the cylindrical surface and the top and bottom faces of the rotor, respectively [20].

The remaining losses \(P_{\text{hys,ec}} \) are composed of hysteresis losses \(P_{\text{hys}} \) in the stator core and eddy current losses \(P_{\text{ec}} \) in the stator and the rotor.

Figure 6 shows the obtained losses from standstill up to 150,000 rpm. As the rotational speed is increased, hysteresis and eddy current losses begin to grow and constitute the dominant part of the total losses. Due to the low resistance of the stator windings, the copper losses remain small throughout a wide speed range. Above 120,000 rpm these losses increase rapidly due to the increasing current ripple caused by the limited switching frequency of the power electronic converter. The ripple at 150,000 rpm has been visualized for an exemplary phase current in the inset of Fig. 6. As it adds significant harmonic content to the stator field, it also causes an increase of \(P_{\text{hys,ec}} \).

At 150,000 rpm the losses sum up to 43.9 W, with \(P_{\text{hys,ec}} \) constituting 56.3 % (24.7 W) of the overall losses. The copper losses and windage losses amount for 37.1 % (16.2 W) and less than 7 % (3 W), respectively. The latter have a minor contribution, as expected. Detailed loss investigations of slotless bearingless drives including the respective theoretical models can be found in [21], [22].

V. CONCLUSION

Based on the conceptional study outlined in [12], a prototype of a bearingless slotless slice motor for high rotational speeds was designed, implemented and tested successfully. The rotor is levitated stably over the entire speed range up to its maximum rotational speed of 150,000 rpm. Due to its solid disc shape, the brittle material is able to withstand the occurring mechanical stress and allows for repeatable experiments. The maximum speed reported in this work was achieved reproducibly and under stable operating conditions. Measurements of the motor losses have shown that these are mainly due to iron and copper losses, while windage losses remain small. To the knowledge of the authors, the rotational speed as demonstrated in this work is the highest rotational speed attained by a bearingless slice motor to date.

REFERENCES

Fig. 5: Flux signal during speedup (a) as well as exemplary phase current (b), radial position signals (c) and (d), axial deflection (e), and Hall sensor signal (f) at the maximum speed of 150,000 rpm.

Fig. 6: Measured motor over the entire speed range. The inset shows a detailed view of an exemplary phase current at maximum speed.

Marcel Schuck (S’13-M’18) received the B.Sc. degree in Electrical and Computer Engineering from the Technische Universität Darmstadt, Germany, in 2011 and the M.Sc. degree in the same field from the University of Illinois at Urbana-Champaign in 2013. He received an MBA degree from the Collège des Ingénieurs in Paris, France in 2014. He was a Ph.D. student at the Power Electronic Systems Laboratory at ETH Zurich, Switzerland from 2014 to 2017, where he is currently working as a postdoctoral researcher. His research interests include ultra-high speed bearingless machines, acoustic levitation, and mechatronic systems.

Daniel Steinert (S’13) was born in Roth, Germany, in 1987. He received the M.Sc. degree in mechatronics from Dresden University of Technology, Dresden, Germany, in 2012, where he focused on micromechatronics and precision engineering. In 2015, he received the Ph.D. degree from the Power Electronic Systems Laboratory of the Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland, where he worked on high-speed bearingless motors. He is currently with Levitronix GmbH, Zurich, Switzerland, where his research is focused on bearingless motor topologies, control concepts, losses, and applications of bearingless motors.

Thomas Nussbaumer (S’02-M’06) was born in Vienna, Austria, in 1975. He received the M.Sc. (Hons.) degree in electrical engineering from Vienna University of Technology, in 2001 and the Ph.D. degree from the Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland, in 2004. From 2001 to 2006, he was with the Power Electronic Systems Laboratory, ETH Zurich, where he was involved in research on modeling, design, and control of three-phase rectifiers, power factor correction techniques, and electromagnetic compatibility. Since 2006, he has been with Levitronix GmbH, Zurich, where he is currently involved in research on bearingless motors, magnetic levitation, and permanent-magnet motor drives for the semiconductor and biotechnology industry. His current research is focused on compact and high-performance mechatronic systems, including novel power electronics topologies, control techniques, drive systems, sensor technologies, electromagnetic interference, and thermal aspects.

Johann W. Kolar (S’89-M’91-SM’04-F’10) received the M.Sc. and Ph.D. degrees (summa cum laude) from Vienna University of Technology, Vienna, Austria. He is currently a Full Professor with the Head of the Power Electronic Systems Laboratory, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland. He has proposed numerous novel pulsed-width-modulation converter topologies and modulation and control concepts, published more than 650 scientific papers in international journals and conference proceedings, and filed more than 110 patents. The focus of his current research is on ultra-compact and ultra-efficient converter topologies employing latest power semiconductor technology (SiC and GaN), wireless power transfer, solid-state transformers, power supplies on chip, and ultra-high speed and bearingless motors. Prof. Kolar was a recipient of 21 IEEE TRANSACTIONS and conference prize paper awards, the 2014 SEMIKRON Innovation Award, the 2014 IEEE Power Electronics Society R. David Middlebrook Award, and the ETH Zurich Golden Owl Award for Excellence in Teaching.