Analysis of Theoretical Limits of Forced-Air Cooling Using Advanced Composite Materials with High Thermal Conductivities

U. Drofenik
A. Stupar
J. W. Kolar

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of ETH Zurich’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Analysis of Theoretical Limits of Forced-Air Cooling Using Advanced Composite Materials with High Thermal Conductivities

Uwe Drofenik, Member, IEEE, Andrija Stupar, Student Member, IEEE, and Johann W. Kolar, Fellow, IEEE

Abstract—Cooling systems take a significant portion of the total mass and/or volume of power electronic systems. In order to design a converter with high power density, it is necessary to minimize the converter’s cooling system volume for a given maximum tolerable thermal resistance. This paper theoretically investigates whether the cooling system volume can be significantly reduced by employing new advanced composite materials like isotropic aluminum/diamond composites or anisotropic highly orientated pyrolytic graphite. Another strategy to improve the power density of the cooling system is to increase the rotating speed and/or the diameter of the fan, which is limited by increasing power consumption of the fan. Fan scaling laws are employed in order to describe volume and thermal resistance of an optimized cooling system (fan plus heat sink), resulting in a single compact equation dependent on just two design parameters. Based on this equation, a deep insight into different design strategies and their general potentials is possible. The theory of the design process is verified experimentally for cooling a 10kW converter. Further experimental results showing the result of the operation of the optimized heat sink are also presented.

Index Terms—Cooling systems, heat sink optimization, power density, power electronic systems.

I. INTRODUCTION

POWER ELECTRONIC converters are essential system components wherever electricity has to be provided. There is a strong desire to continuously increase the power density of converter systems to ease their integration into larger systems and products. Since the cooling system of a converter is typically a significant contributor to its volume and weight, therefore, in this paper we investigate the theoretical limits of minimizing the volume of a forced-air convective cooling system composed of fan and heat sink for a desired thermal resistance.

Research recent and past has been devoted to heat sink optimization [1]–[5]. An optimized heat sink, that is, a heat sink plus fan system, suited for a particular application, can do much in terms of reducing overall volume [2]. Alternatively and/or additionally the fan power can be increased to improve the convective cooling. The optimization procedure used for the purpose of this paper is that described in [2]. Basically, the optimization can be explained like this: for a heat sink channel with a certain length, there results a certain pressure drop along the channel in the direction of the air flow. Balancing this pressure drop against the fan pressure gives the operating point of the fan. Increasing the length of the heat sink will increase the pressure drop and reduce the air flow volume, but on the other hand increase the total fin surface employed for convective cooling. Here, an optimum heat sink length concerning minimum thermal resistance of the heat sink can be found. An important side condition is the minimum base plate area for placing the power chips of the converter. For each fin there is a certain minimum fin thickness necessary to transport an optimum amount of heat to the fin surface. The question of flow bypass treated in [5] and [6] is not considered here since this phenomenon can be avoided with proper channelling of the air from the fan.

A further very interesting development is the recent introduction of new materials providing extremely high thermal conductivity [7]–[12] (see Table I), that theoretically might be employed as heat sink material. In this paper, we investigate if it makes sense to consider employing such advanced materials for the manufacture of heat sinks, and what performance improvements might be possible. As noted earlier, since there is for each heat sink fin a minimum thickness required for the transport of an optimum amount of heat to its surface, if the thermal conductivity of the fin material is increased, thinner fins can be employed, which means that the number of fins can be increased resulting in a larger total fin surface, and, therefore, improved convective heat transfer [1], [2]. Since all these effects are highly non-linear, we cannot simply assume that, for example, doubling the thermal conductivity of the material will reduce the thermal resistance of the heat sink by a factor of two. It is necessary to obtain an analytical description of this heat transfer problem based on empirical expressions, and then to perform a systematic optimization. The question of manufacturing such heat sinks and fans, of their reliable operation and of the costs is excluded from this paper, and is treated elsewhere [13]. Although this investigation is mainly theoretical, we discuss practical aspects in Section III, and give experimental data of prototype heat sinks optimized according to the theory presented here in order to verify our underlying mathematical models.
DROfenik et al.: Analysis of Theoretical Limits of Forced-Air Cooling

The investigation is limited to the heat of the theory, verified by experimental results, can be found of the mathematical procedure and (1)–(14), and the accuracy calculated as performed in the following. A detailed description and the resulting thermal resistance of the heat sink can be calculated via (10)–(14). The non-linear equations (7)–(9) the convective heat transfer is defined. Finally, employing the model of Fig. 3, the thermal resistance of the heat sink can be calculated via (10)–(14). The non-linear equations (1)–(14) can be easily solved numerically [2], but due to their complexity, it is very difficult to gain insight into the relationships between various design parameters like fan speed, fan diameter, thermal conductivity of the heat sink material, total chip area, or heat sink length.

The procedure of obtaining the pressure in one channel (3)–(6) is shown graphically in Fig. 2. Employing (6), it is decided if the flow problem is laminar or turbulent. With empirical equations (7)–(9) the convective heat transfer is defined. Finally, employing the model of Fig. 3, the thermal resistance of the heat sink can be calculated via (10)–(14). The non-linear equations (1)–(14) can be easily solved numerically [2], but due to their complexity, it is very difficult to gain insight into the relationships between various design parameters like fan speed, fan diameter, thermal conductivity of the heat sink material, total chip area, or heat sink length.

TABLE I

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity (W/mK)</th>
<th>In-Plane Coef. of Therm. Exp. (ppm/(°C))</th>
<th>Specific Weight (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>210 (isot.)</td>
<td>23</td>
<td>2700</td>
</tr>
<tr>
<td>Copper</td>
<td>380 (isot.)</td>
<td>17</td>
<td>8930</td>
</tr>
<tr>
<td>Diamond</td>
<td>2200 (isot.)</td>
<td>2</td>
<td>3500</td>
</tr>
<tr>
<td>Natural graphite in epoxy-matrix (isot.)</td>
<td>370</td>
<td>2.4</td>
<td>1940</td>
</tr>
<tr>
<td>Continuous carbon fibers in SiC-matrix (isot.)</td>
<td>370</td>
<td>2.5</td>
<td>2200</td>
</tr>
<tr>
<td>Diamond particles in Al-matrix</td>
<td>650</td>
<td>7</td>
<td>3100</td>
</tr>
<tr>
<td>Highly oriented pyrolytic graphite</td>
<td>1700</td>
<td>8</td>
<td>2250</td>
</tr>
</tbody>
</table>

Fig. 1. Geometry of the heat sink investigated in this paper. In order to provide the whole fin surface with air flow, the heat sink dimensions have to match the fan size resulting in \(b = c = D \), where \(D \) is the diameter of the fan facing the heat sink. Thermal losses \(P_L \) (W) occur at the top of the base plate and are homogeneously distributed over the area \(A_{CHIP} = b \cdot L \).
The heat sink channel pressure drop \(\Delta p_{\text{CHANNEL}} \) is shown for laminar flow in linear dependency of the flow. Intersection of the two characteristics gives the fan operating point which is for optimized heat sinks typically (but not necessarily!) close to the maximum "mechanical power" of the air flow.

The first assumptions for deriving the simplified equations are that we operate the fan close to the maximum mechanical power, and that maximum fan pressure \(\Delta p_{F, \text{MAX}} \) is reduced by approximately 50% [factor of 0.5 in (16)] due to the partial air flow from the fan facing not channels but fins [9]. Since for typical fans the maximum mechanical power is shifted from the symmetric center to the right (see Fig. 2), we can roughly approximate maximum air flow and pressure, respectively, as

\[
V_{\text{MAX}} \approx \frac{2}{3} \cdot V_{F, \text{MAX}} \quad (15)
\]

\[
\Delta p_{F, \text{MAX}} \approx \frac{1}{3} \cdot 0.5 \cdot \Delta p_{F, \text{MAX}} \quad (16)
\]

This is also a fan operating area that is often recommended in fan datasheets. Our second assumption is that the number of fins is larger than at least 5, so that we can write

\[
x < \frac{c}{s} \quad \rightarrow \quad d_0 \approx 2s \quad (17)
\]

The third assumption is laminar or mixed flow in the operating point. As we experienced in various optimizations [2], the optimized operating point is very often in the vicinity of the boundary region between laminar and turbulent flow ("mixed flow"), where the laminar equations are still a very good approximation. From (3) we get

\[
\frac{v^2 R_h}{L} = 48 \cdot \rho_{\text{AIR}} v_{\text{MAX}}^2 R_{F, \text{MAX}} \approx \frac{10^{-3}}{3} \cdot V_{F, \text{MAX}} \cdot \frac{\Delta p_{F, \text{MAX}}}{\Delta p_{F, \text{MAX}}} \quad (18)
\]

which defines the condition of operating the fan close to its maximum mechanical power. Then, the fin thickness can be calculated as

\[
t = \frac{c}{n} - \frac{s}{s} = s \cdot \left[10^{-3} \cdot \frac{\Delta p_{F, \text{MAX}}}{V_{F, \text{MAX}}} \cdot \frac{v^2}{L} \cdot \frac{c^2}{L^2} - 1 \right] \quad (19)
\]

which must not be negative, resulting in the condition

\[
x > \sqrt{10^{-3} \cdot \frac{V_{F, \text{MAX}}}{\frac{L}{n^2}} \cdot \frac{L}{c^2}} \quad (20)
\]

In (17) we assume a minimum fin number of 5, resulting in the second condition for the channel thickness \(s \) as

\[
\frac{1}{5} \leq \frac{c}{s} = s \cdot \frac{v^2 R_h}{L} \quad (21)
\]

As can be seen in (14), the thermal resistance of the heat sink \(R_{h, S-4}(\text{fin}) \) is composed of three components: the conductive resistance of the sink material \(R_{h, S-4}, \text{(fin)} \) mainly through the fins, a convective resistance \(R_{h, \text{conv}} \) from fin surface into the air, and a resistance \(R_{h, \Delta T} \) due to the temperature rise of the air flowing from channel inlet to channel outlet.

\[
R_{h, S-4}(\text{fin}) = R_{h, \text{conv}} + R_{h, \Delta T} + R_{h, S-4}, \text{(fin)} \quad (22)
\]

\[
R_{h, \text{conv}} = \frac{1}{5} R_{h, d} + \frac{1}{5} R_{h, \text{fin}} = \frac{1}{5} R_{h, \text{fin}} \quad (23)
\]
The equation of the laminar Nusselt number (7) can be approximated as

\[Nu_{lam} \approx 2.7 \left[1 + \frac{1}{4.5 \sqrt{X}} \right] \tag{24} \]

with

\[X = \frac{3 \nu_{AIR}}{8 D^2} \frac{L \cdot c}{V_{F,MAX}} \tag{25} \]

resulting in

\[Nu_{lam} \approx 2.7 \left[1 + 66.7 \frac{V_{F,MAX}^2}{L \cdot c} \frac{1}{R_{T,C}} \right] \tag{26} \]

Based on this and employing (11), (17), and (18), the convective resistance is given as

\[R_{C,CONV} = \frac{2a}{1 + 2 \cdot 10^{-3} \cdot \sqrt{\Delta P_{F,MAX}}} \tag{27} \]

Finally, the third resistive component is calculated as

\[R_{C,AT} = 0.5 \frac{k}{\rho_{AIR} c_{p,AIR}} \frac{V_{F,MAX}}{V_{F,MAX}^2} \approx 7.5 \cdot 10^{-4} \frac{k}{V_{F,MAX}} \tag{28} \]

\section*{C. Influence of the Fan}

Maximum air flow rate \(V_{F,MAX} \) (m\(^3\)/s), maximum pressure \(\Delta P_{F,MAX} \) (N/m\(^2\)), input power \(P_{IN} \) (W), and noise \(\text{noise}_{FAN} \) (dB) of a fan are dependent [17] on rotating speed \(N \) (rpm) and diameter \(D \) (m) as described by

\[V_{F,MAX} = k_1 \cdot N \cdot D^3 \tag{29} \]

\[\Delta P_{F,MAX} = k_2 \cdot N^2 \cdot D^2 \tag{30} \]

\[P_{IN} = k_3 \cdot N^3 \cdot D^3 \tag{31} \]

\[\text{noise}_{FAN} \propto \log(N) \tag{32} \]

Based on datasheet information [16], we investigated 65 commercially available fans for electronics cooling. The fan diameters varied from 40 mm to 200 mm (factor 5), the rated power varied between 0.5 W and 25 W (factor 50), and the rated fan speed between 1700 rpm and 15500 rpm (variation factor 9). Using the simple laws (29)-(31), we calculated the parameters \(k_1, k_2, k_3 \) for these 65 fans as

\[k_1 = [6.0 \cdot 10^{-3} \ldots 13.5 \cdot 10^{-3}] \tag{33} \]

\[k_2 = [3.94 \cdot 10^{-4} \ldots 8.85 \cdot 10^{-4}] \tag{34} \]

\[k_3 = [3.0 \cdot 10^{-5} \ldots 76.5 \cdot 10^{-6}] \tag{35} \]

The parameters \(k_1 \) and \(k_2 \) remain within a comparably small range. The variations in (33) and (34) can be explained by variations of about a factor of two of the ratio of fan height and fan diameter for different investigated types. The wide variation of \(k_3 \) in (35) is due to the mechanical efficiency of the fan. The minimum gap width between fan blade and housing is limited by manufacturing tolerances. With decreasing fan diameter \(D \), the ratio of this gap (where the turbulent losses occur) and the diameter increases in a non-linear way. This results in a non-linear decrease of fan efficiency, and in very large values of \(k_3 \) for small fan diameters as compared to larger ones. With the fan laws (29)-(31), assuming \(D = c \), and defining

\[A_1 = 10^{-12} \]

\[A_2 = 5 \cdot 10^{-4} \]

\[A_3 = 6.5 \cdot 10^{-7} \]

\[A_4 = 7.5 \cdot 10^{-4} \]

the three thermal resistance components of the heat sink can be written as

\[R_{C,CONV} = \frac{1}{1 - 10^{-3} \frac{10^{-3}}{10^{-3}}} \tag{37} \]

\[R_{C,AT} = \frac{1}{1 - 10^{-3} \frac{10^{-3}}{10^{-3}}} \tag{38} \]

\[R_{C,AT} = \frac{7.5 \cdot 10^{-4}}{\sqrt{\frac{1}{N^2} \cdot \frac{1}{V_{F,MAX}^2}}} \tag{39} \]

\section*{D. Optimizing the Cooling System Performance Index}

The power density \(d_{SYS} \) (W/litre) of the converter system is defined as

\[d_{SYS} = \frac{P_{OUT,SYS}}{Vol_{SYS}} \frac{\eta_{SYS}}{1 - \eta_{SYS}} \frac{P_{IN}}{PV_{SYS}} \frac{\eta_{SYS}}{1 - \eta_{SYS}} \frac{\Delta T_{T,W}}{R_{T,S} \cdot Vol_{SYS}} \tag{40} \]

where \(P_{OUT,SYS} \) is the output power of the system, \(Vol_{SYS} \) the system volume, \(\eta_{SYS} \) its efficiency, \(P_{IN} \) its losses, and \(\Delta T_{T,W} \) the difference between the temperatures of the heat sink surface and the ambient. For comparison of different heat sink designs concerning power density, we proposed in [2] and [18] the cooling system performance index (CSPI) (see also [19], published at the same time, and giving results in good agreement with the findings of this paper). We give it here in a slightly modified but equivalent form as

\[CSPI = \frac{W}{K \text{ litre}} \frac{G_{0,5}}{\text{ W/litre}} \frac{W}{K} \frac{\text{ W}}{Vol_{CSPI}} \tag{41} \]

where \(G_{0,5} \) is the thermal conductance of the heat sink. Although the CSPI has units of W/(K·litre), it is intended for use as an index, and as indices are typically given without units, for clarity the use of units next to CSPI figures will be omitted further on in this paper. The cooling system power density \(d_{CS} \) (W/litre) can be expressed proportional to CSPI as

\[d_{CS} = \frac{W}{Vol_{CS}} \frac{P_{OUT,CSPI}}{Vol_{CS}} \frac{\eta_{CS}}{1 - \eta_{CS}} \frac{\Delta T_{T,W}^{CSPI}}{R_{T,S} \cdot Vol_{CS}} \tag{42} \]

The density \(d_{CS} \) considers all components of the cooling system. In case of forced-air cooling this is the heat sink volume plus the fan volume.
Fig. 4. Variation of fan rotating speed N and different fan diameters, employing heat sink material HOPG with chip area $A_{CHIP} = 32\text{ cm}^2$. Dotted lines indicate Reynolds numbers higher than 2300, violating the laminar flow condition. Contribution of (a) heat flow through heat sink material, (b) convection and (c) temperature gradient of air in flow direction, (d) resulting CSPI, and (e) necessary fan power.

The CSPI is very useful to directly compare heat sink plus fan combinations of different size, of different types, and in different applications. If an approximate value of CSPI is known, and the maximum allowed thermal resistance of the heat sink is given (from the knowledge of maximum ambient temperature, maximum junction temperature, and maximum semiconductor junction-to-case temperature), the volume of the cooling system of the converter can be directly calculated. This makes it very easy for the electrical engineer to roughly estimate the total volume, mass, and power density of a converter design without any deeper knowledge of the cooling system. For commercial non-optimized heat sinks for converter systems in the kW-range employing forced-air-cooling, the value of CSPI is typically in the range of 3–5 (as shown in [2]). Optimized heat sinks, as will be shown in the following, can reach much higher CSPI-values.

Defining the total chip area to be cooled as

$$A_{CHIP} = Lc$$

we can, based on the assumption that the fan thickness is approximately one third of its diameter, define

$$CSPI^{-1} = \frac{R_{th}^{(Ch)}}{Lc} \cdot \frac{Vol_c}{c^2} = \left(\frac{R_{th}^{(Ch)}}{Lc} + R_{th,con} + R_{th,\Delta T}\right)$$

$$= CSPI_{Ch}^{-1} + CSPI_{con}^{-1} + CSPI_{\Delta T}^{-1}$$

(44)

assuming that the gap between fan and heat sink is small compared to c and L. This gives the inverse of CSPI as

$$CSPI^{-1} = \frac{c^2}{1 - A_1 \cdot \frac{s}{Nc}} + \frac{A_2}{1 + A_2 \cdot \frac{s}{Nc}} + A_3 \cdot \frac{s}{Nc}$$

(45)

with the necessary side condition [see (20) and (21)]

$$\sqrt{\frac{A_1}{A_0} \frac{A_{Ch}}{Nc^2}} \leq s \leq \sqrt{\frac{A_1}{A_0} \frac{A_{Ch}}{Nc^2}}$$

(46)

The fin number is

$$n = (\text{int}) \left[\frac{A_1}{A_0} \frac{A_{Ch}}{Nc^2} \right]$$

(47)

and the Reynolds number

$$Re_k = 6.35 \cdot 10^5 \cdot \frac{k_1 \cdot N \cdot c^2}{\pi}$$

(48)

must not be significantly larger than 2300 in order to verify the original assumption of laminar or mixed flow in the heat sink channels [15]. For optimization of the CSPI, the optimum channel width has to be found for every parameter set (λ_{HS}, A_{CHIP}, c, N).

Fan rotating speed dependence of the three terms in (45) contributing to the total CSPI is shown in Fig. 4 for heat sink material highly orientated pyrolytic graphite (HOPG). Only the term $CSPI_{Ch}^{-1}$ [Fig. 4(a)] can be influenced by the
heat sink conductivity. Therefore, it only makes sense to invest in advanced materials, if the other two terms, \((CSPI_{conv})^{-1}\) [Fig. 4(b)] and \((CSPI_{DT})^{-1}\) [Fig. 4(c)], are small compared to \((CSPI_{FIN})^{-1}\). For low rotating speed \(N\) and small diameter \(c\), the term \((CSPI_{FIN})^{-1}\) will be negative which means there is no design solution with an operating point as defined in (15) and (16). In this example, the chip area \(A_{CHIP}\) is set to be 32 cm² which is approximately the space needed for all three power modules containing the chips for a 10 kW Vienna Rectifier (VR1).

Theoretically, as shown in Fig. 4(d), there is no limit of the CSPI if the fan rotating speed \(N\) is increased. But, as one can immediately see from Fig. 4(e), the power consumption of the fan will reach unrealistically high values. Therefore, by defining the maximum acceptable power consumption \(PFAN,\text{MAX}\) from (31), the maximum tolerated fan rotating speed can be expressed in terms of the fan diameter \(D = c\) as

\[
N = \sqrt[3]{\frac{c}{\frac{A_{CHIP}}{\pi} \cdot \frac{PFAN,\text{MAX}}{3}}} \cdot c^{-5/3} \tag{49}
\]

resulting in

\[
CSPI^{-1} = CSPI^{-1}(c, \lambda_{HS}, A_{CHIP}, PFAN,\text{MAX}) = \frac{\frac{c^3}{\pi} \cdot (1 + \frac{c^2}{\lambda_{HS} A_{CHIP}})}{1 - \frac{A_{CHIP}}{\frac{A_{CHIP}}{\pi} \cdot \sqrt{\frac{PFAN,\text{MAX}}{3}} \cdot c^{1/3}}} + 1 \cdot \frac{\frac{A_{CHIP}}{\pi} \cdot \frac{PFAN,\text{MAX}}{3}}{\frac{A_{CHIP}}{\pi} \cdot \sqrt{\frac{PFAN,\text{MAX}}{3}} \cdot c^{1/3}} \tag{50}
\]

which is dependent only on the thermal conductivity of the heat sink \(\lambda_{HS}\) and the diameter of the fan \(c\). The channel width \(s\) has to be always chosen in order to maximize CSPI. Therefore, the channel width \(s\) is not an independent design parameter in this equation. Condition (46) has to be fulfilled, and (48) should not be violated.

In Fig. 5, the results of the numerical computation of (50) are shown. The chip area \(A_{CHIP}\) is selected to fulfill the specifications of a 10 kW Vienna Rectifier (VR1), and the fan losses are limited to 20 W. Fig. 5(a) shows that with increasing \(\lambda_{HS}\) the CSPI becomes flat because only the first term \((CSPI_{FIN})^{-1}\) is affected. Fig. 5(b) shows the fin and channel geometry necessary to realize the optimum heat sink. With larger values of \(\lambda_{HS}\) the fin thickness must be manufactured below 0.5 mm which provides a limit to the practical realization, which will be discussed in the next section. Fig. 5(c) shows that the Reynolds number is always below 2300.

In Fig. 6 (all parameters equal to Fig. 5) fan diameter \(c\) is varied. From Figs. 5 and 6, one can see that it is possible for cooling systems of converters in the kW-range to reach a CSPI of about 20 (five times larger than typical commercial heat sinks) by employing aluminum and optimizing fan and heat sink geometry. Employing materials with much higher thermal conductivities does not improve the CSPI correspondingly; as seen in Fig. 6, e.g., \(c = 40\) mm, increasing the thermal conductivity eight times less than doubles the CSPI.

III. Practical Considerations and Experimental Results

In the previous theoretical sections, we did not comment on the many practical difficulties associated with the materials shown in Table I. To name a few well-known problems,
Fig. 7. Optimized heat sink employing SanAce 40×40×28 mm/50 dB [11] with \(b = c = 40 \text{mm}, d = 10 \text{mm}, L = 80 \text{mm}, A_{CHIP} = 32 \text{cm}^2, \text{Vol}_{CS} = 0.22 \text{liter} \) (a) Aluminum with \(s = 16, r = 1.5 \text{mm}, t = 1.0 \text{mm} \) (b) Copper with \(s = 23, r = 1.3 \text{mm}, t = 0.5 \text{mm} \)

TABLE II

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
<th>(R_{th}) (K/W)</th>
<th>CSPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Theoretical</td>
<td>0.254</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>0.260</td>
<td>17.5</td>
</tr>
<tr>
<td>Copper</td>
<td>Theoretical</td>
<td>0.240</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>0.215</td>
<td>21.2</td>
</tr>
</tbody>
</table>

HOPG shows only high thermal conductivity in-plane which is sufficient for the fins but provides very poor heat spreading within the base plate. HOPG is very expensive—according to [12], the material for a prototype as shown in Fig. 7 would cost more than 1000 Euro. Further, employing for example Al-diamond metal-matrix [10], [11] might limit the fin thickness minimum to about 1.0 mm which is far above the calculated optimum (Fig. 5(b)). For these reasons two optimized heat sinks for a 10 kW-VR1 based on (1)–(14) and/or (50) were manufactured for the purpose of this paper out of more common materials—aluminum and copper. They are shown in Fig. 7. Details concerning the manufacturing, measurements and design tolerances have been published in [13]. The measurements verify the theoretical calculations with very good accuracy and are shown in Table II.

Furthermore, to show the operation of an optimized heat sink, the aluminum heat sink from Fig. 7(a) was observed under load with the use of a thermal imaging camera. Fig. 8 shows a thermal image of the heat sink when a load of 60 W (heat resistor) is mounted on top. The image was taken after the temperature distribution had stabilized (more than 30 min of continuous operation). The hot area in the middle of the heat sink is the middle fixture of the fan, where there is, of course, no direct air flow. In a non-optimized heat sink, according to the theory presented, we would expect the air in the channels to be either just as hot as the fins, or just as cool as the ambient, in either case signifying non-optimal heat transfer. Here however it can be seen from the image in Fig. 8 that the air in the channels is just slightly cooler than the fins, exactly as predicted by the optimization theory presented earlier. This fact tells us that the heat is being efficiently dissipated from the fins into the air, and also, since the air is slightly cooler, that heat is also being removed via the fan.

IV. Conclusion

An equation to directly calculate the CSPI that specifies cooling system volume for a given thermal resistance by taking into account thermal conductivity of the heat sink material and fan characteristic was presented. An optimization for a 10 kW converter shows that aluminum might still be a very good choice considering manufacturability, weight, and cost (see Fig. 9). However for different applications and/or design specifications advanced thermal materials might provide significant potential for cooling power electronics. For example, in weight and size-critical applications such as aerospace, HOPG heat sinks could offer superior performance at a smaller weight than with metal heat sinks. Finally, experimental results featuring an optimized heat sink under load were presented, and were found to be in line with the predictions made by the optimization theory presented in this paper.

REFERENCES

Uwe Drofenik (S’96–M’00) was born in Mording, Austria, in 1970. He received the M.S. (cum laude) and Ph.D. (cum laude) degrees in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 1995 and 1999, respectively. From 1997 to 2000, he was a Scientific Assistant with the Vienna University of Technology, where he was involved in power electronic projects and CAD/CAM software development for industry. In 2001, he joined the Swiss Federal Institute of Technology, Zurich, Zurich, Switzerland, as a Post-Doctoral Researcher, where he is leading the development of a multi-disciplinary simulation software for virtual prototyping in power electronics. This includes the development, programming, and experimental testing of flip-chip micro-channels, thermal and electromagnetic 3D-FEM simulators. His research activities focus on power electronic components, systems, and the intelligent coupling of all these software-modules within a single software platform. He is the author of the web-based interactive electronics educational power-electronics software iPES (www.ipes.ethz.ch). In 1996, he was a Researcher with the Masada-Ohsaki Laboratory, University of Tokyo, Tokyo, Japan. He has published more than 70 refereed and journal papers and four patents. Dr. Drofenik received the “Iwao Takahashi Award for Outstanding Achievement in Power Electronics” from the IEE of Japan in 2005. He is a member of the Austrian Society of Electrical Engineering. Andrij Stipor (S’02) was born in Belgrade, Serbia, in 1984. He received the Bachelor (with honors) and Master degrees in electrical engineering from the University of Technology Vienna, Vienna, Austria, in 2006. Since 2004, he has been an independent International Consultant in close collaboration with the University of Technology Vienna, in the fields of power electronics, industrial electronics, and high performance drives. He has proposed numerous novel pulse wide modulation converter topologies and modulation concepts, e.g., the VIENNA rectifier and the three-phase AC-AC square matrix converter. He has published over 350 scientific papers in international journals and conference proceedings, and co-authored 75 patents. He was appointed the Professor and Head of the Power Electronic Systems Laboratory, Swiss Federal Institute of Technology ETH Zurich, Zurich, Switzerland, on Feb. 1, 2001. The focus of his current research is on AC-AC and DC-DC converter topologies with low effects on the mains, e.g., for power supply of data centers, more-electric-aircraft, and distributed renewable energy systems. Further main areas of his research include the realization of ultra-compact and all-inclusive converter modules employing latest power semiconductor technology (e.g., SiC), novel concepts for cooling and electromagnetic interference filtering, multidomain/scale modeling/simulation and multiobjective optimization, physical model-based lifetime prediction, pulsed power, and ultrahigh speed and bearingless motors.

Johann W. Kolar (M’91–SM’04–F’10) received the M.S. and Ph.D. (summa cum laude) degrees in electrical engineering from the University of Technology Vienna, Vienna, Austria, in 1984. Since 1984, he has been an Independent International Consultant in close collaboration with the University of Technology Vienna, in the fields of power electronics, industrial electronics, and high performance drives. He has proposed numerous novel pulse wide modulation converter topologies and modulation concepts, e.g., the VIENNA rectifier and the three-phase AC-AC square matrix converter. He has published over 350 scientific papers in international journals and conference proceedings, and co-authored 75 patents. He was appointed the Professor and Head of the Power Electronic Systems Laboratory, Swiss Federal Institute of Technology ETH Zurich, Zurich, Switzerland, on Feb. 1, 2001. The focus of his current research is on AC-AC and DC-DC converter topologies with low effects on the mains, e.g., for power supply of data centers, more-electric-aircraft, and distributed renewable energy systems. Further main areas of his research include the realization of ultra-compact and all-inclusive converter modules employing latest power semiconductor technology (e.g., SiC), novel concepts for cooling and electromagnetic interference filtering, multidomain/scale modeling/simulation and multiobjective optimization, physical model-based lifetime prediction, pulsed power, and ultrahigh speed and bearingless motors.

Dr. Kolar received the Best Transactions Paper Award from the IEEE Industrial Electronics Society in 2005, the Best Paper Award from the ICPE in 2007, the 1st Prize Paper Award from the IEEE IAS ICEPE in 2008, the 2007 IEEE INCON Best Paper Award from the IEE PETC in 2009, the 2009 IEEE Power Electronics Society Transaction Prize Paper Award, and the 2010 Best Paper Award of the IEEE/ASME TRANSACTIONS ON MECHATRONICS. He received an Excellent Fellowship from the University of Canterbury, Christchurch, New Zealand, in 2003. He initiated and/or is the Founder/Co-Founder of four spin-off companies targeting ultrahigh speed drives, multidomain/scale simulation, ultracompact/efficient converter systems, and pulsed power/energy electronic processing. In 2006, the European Power Supplies Manufacturers Association awarded the Power Electronics Systems Laboratory of ETH Zurich as the leading academic research institution in power electronics in Europe. He is a member of the IEEE and of the international steering committees and technical program committees of numerous international conferences in the field (e.g., Director of the Power Quality Branch of the International Conference on Power Conversion and Intelligent Motion). He is the Founding Chairman of the IEEE PELS Austria and Switzerland Chapter and the Chairman of the Education Chapter of the EPF Association. From 1997 to 2003, he was an Associate Editor of the IEEE TRANSACTIONS ON POWER ELECTRONICS. Since 2002, he has been an Associate Editor of the Journal of Power Electronics of the Korean Institute of Power Electronics, and a member of the Editorial Advisory Board of the IEEE TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING.