Ultraflat Interleaved Triangular Current Mode (TCM) Single-Phase PFC Rectifier

C. Marxgut,
F. Krismer,
D. Bortis,
J. W. Kolar

This material is published in order to provide access to research results of the Power Electronic Systems Laboratory / D-ITET / ETH Zurich. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the copyright holder. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Ultraflat Interleaved Triangular Current Mode (TCM) Single-Phase PFC Rectifier

Christoph Marxgut, Student Member, IEEE, Florian Krismer, Member, IEEE, Dominik Bortis, Student Member, IEEE, and Johann W. Kolar, Fellow, IEEE

Abstract—This paper presents the analysis and realization of a topology suitable to realize a power factor correction (PFC) rectifier with a thickness of only a few millimeters. The low height of the converter requires all components to be integrated into the printed circuit board (PCB). Still reasonable dimensions of the converter PCB are feasible (221 mm × 157 mm for a 200 W PFC rectifier), since PCB-integrated inductors and capacitors allow for high energy densities due to their large surface area which facilitates a low thermal resistance to ambient. A multicell totem-pole PFC rectifier employing a soft-switching modulation scheme over the complete mains period is identified as an adequate topology. The mode of operation is entitled triangular current mode (TCM) due to the triangular-shaped inductor currents. The modulation technique requires a reliable description of the switching transition of a half-bridge in order to provide accurate timing parameters. For this purpose, a simplified model of the nonlinear MOSFETs’ output capacitances facilitates closed-form analytical expressions for duty cycle and switching frequency. Furthermore, this paper details the control of three interleaved converter cells which yields a reduction of the input current ripple. A 200 W TCM PFC rectifier with a low height of 5 mm has been realized and measurement results are provided in order to validate the theoretical considerations. The presented TCM PFC rectifier achieves an efficiency of 94.6% and a power factor of 99.3% at nominal power.

Index Terms—Single-phase power factor correction (PFC) rectifier, power sheet, printed circuit board (PCB)-integration, triangular current mode (TCM).

I. INTRODUCTION

O

VER the past decades, the evolution of power electronic systems has shown a trend toward higher power densities, either due to limited space requirements [1] or indirectly driven by cost and/or weight reductions (aircraft applications [2], [3], server farms [4]). In the systems presented in [1]–[4], the increase of power density is accomplished by an increase of efficiency as the reduced volume provides less surface area for power loss dissipation.

Over the past years, rising energy cost and increasing environmental awareness have shifted the focus toward high-efficient power systems. Converter systems with ultrahigh efficiency, however, are large and expensive [5]. For that reason, the economic realization requires a tradeoff between power density \(\rho \) and efficiency \(\eta \) of a converter system for which the \(\rho \)-\(\eta \)-Pareto front, e.g., presented in [6], is a vivid representation. The analysis in [4]–[6], however, is based on cubical-shaped converters and needs to be modified for flat converters, since most of its components, e.g., inductors and capacitors, are subject to particular limitations [7].

Cubical-shaped power converters applied to specific future applications, as, e.g., flat screens [8], [9] or OLED lighting panels [10]–[12], would determine the outline of the entire system, and therefore, ultraflat power converters are highly demanded. The thicknesses of the respective converter systems, which are composed of a power factor correction (PFC) rectifier and a series-connected dc–dc converter providing an output power of up to 200 W, are typically limited to 1, . . . , 2 cm [13].

In order to meet the demand of ultraflat power supplies, topologies suitable to realize converter systems with a thickness of only 1 mm and an output power of 200 W (cf., Table I) are under investigation. The respective research project, entitled the Power Sheet [7], analyzes the implications of the extreme height limitation on the converter’s efficiency and its power density, i.e., its \(\rho \)-\(\eta \)-Pareto front, and compares it to conventional cubical-shaped converter systems.

The extremely low thickness can only be achieved if each component is integrated into the printed circuit board (PCB). As a consequence, the dissipated heat has to be transferred to the ambient through the PCB which can be beneficially achieved with a multicell configuration as the power dissipation is divided into several converter cells.

In order to facilitate reasonable dimensions of the converter PCB, ultraflat converter systems employ a topology which facilitates comparably low magnetic and electric energy storage requirements, i.e., small inductors and capacitors. Low energy storage requirements are effectively achieved by increasing the switching frequency. In a conventional hard switching topology, however, an increased switching frequency causes increased switching losses and the requirements put on the cooling system increase [4]. Thus, a soft-switching topology is proposed in

| TABLE I
| SPECIFICATIONS OF THE PFC RECTIFIER OF THE POWER SHEET WITH A THICKNESS OF 1 mm |
|-----------------|-----------------|-----------------|-----------------|
| Input voltage \(v_i \) = 230 V | Output power \(P_{out} \) = 200 W | Amb. temperature \(T_{amb} \) = 45 °C |
| Output voltage \(v_o \) = 400 V |

0885-8993 © 2013 IEEE
order to realize a high switching frequency and low losses due to the switching operation. Furthermore, the converter topology needs to be selected with respect to the electromagnetic interference (EMI) filter requirements, since the EMI filter typically allocates one third of the overall converter volume [6].

A comparison of several PFC rectifier topologies presented in [14] renders the bridgeless PFC rectifier [see Fig. 1(a)] to be promising regarding high efficiency and high power density, as the number of semiconductors in the conduction path is reduced compared to conventional boost-type rectifiers which employ a diode bridge in the input [15], [16]. The bridgeless topology, however, suffers from considerable common-mode (CM) noise as the output rails are floating during the negative mains half-wave. As a consequence, arrangements with either capacitors or diodes as CM return path have to be employed which cause additional losses and increased circuit complexity [6], [16], [17], [18].

A modification of the bridgeless PFC rectifier is the totem-pole bridgeless PFC rectifier depicted in Fig. 1(b) and presented in [16]. Compared to the basic bridgeless topology, a diode and a switch are interchanged which allows the output bars to be connected to the mains for the complete mains period through one of the diodes. Thus, the CM noise is considerably reduced. In continuous conduction mode (CCM) of operation, however, the bridge-leg that is composed of the switches suffers from significant reverse recovery losses. Low switching losses can only be achieved operating in critical conduction mode (CrCM) or in discontinuous conduction mode (DCM) which allow for a resonant switching transition and thus reduced switching losses.

With the modulation technique proposed in [19], the operating range for soft-switching, i.e., zero-voltage switching (ZVS), is limited to $|v_n| \leq V_{out}/2$; for larger input voltages, valley-switching has to be employed to reduce the switching losses. Full-range ZVS over the entire mains period can be achieved with an advanced modulation technique [20], [21], entitled triangular current mode (TCM) due to the triangular-shaped inductor currents, which require elaborate numerical calculations [20] or measurement results [21] to determine the timing parameters needed to operate the converter. The conduction losses of the converter can be reduced by replacing the diodes D_{N1} and D_{N2} by switches. The resulting circuit, depicted in Fig. 2(a), even enables bidirectional power flow.

A drawback of the totem-pole PFC rectifier is the large input current ripple which requires for a large differential-mode (DM) EMI filter. Since the proposed converter is operated with a switching frequency greater than 150 kHz, an interleaved arrangement of n converter cells facilitates a reduced filter size, e.g., the setup with three interleaved converter cells depicted in Fig. 2(b) cancels the first and the second harmonic component of the inductor current i_{L1} in the input current i_n. A two-cell configuration of this converter is discussed in [22]; however, the interleaving control is not detailed and the applied modulation does not allow for ZVS within the complete mains period. Thus, a detailed analysis of the interleaving of three cells [cf., Fig. 2(b)] is shown in this paper.

The interleaved three-cell TCM PFC rectifier depicted in Fig. 2(b) is considered to be the most appropriate topology appropriate regarding the ultraflat converter system as it has the following features:

1) low conduction loss due to synchronous rectification;
2) ZVS over the complete mains period;
3) distributed losses due to the multicell configuration;
4) a reduced DM EMI filter effort due to interleaved inductor currents;
5) low CM noise, and
6) bidirectional operation.

This paper presents a novel accurate and analytical description of the three-cell TCM PFC rectifier. Section II details the full-range ZVS modulation scheme. In particular, the nonlinear characteristic of the MOSFET’s output capacitances has a strong impact on the inductor current and, subsequently, on the timing parameters needed to operate the PFC rectifier. Therefore, Section III proposes a simple analytical model of the nonlinear MOSFET capacitances facilitating the derivation of closed-form analytical expressions that directly enable the calculation of the timing parameters needed to operate the converter and to achieve full-range ZVS. Section IV discusses the control of the complete converter system, i.e., the interleaving control of all inductor currents, an input current control, and an output voltage control. Finally, Section V presents measurement results obtained from a low-height 200 W TCM PFC rectifier prototype.
INTERVALS

Interval 1 \([t_0, \ldots, t_1]\): During interval 1, the switch \(S_{12}\) is closed, \(v_n\) is applied to the inductor \(L\), and the inductor current \(i_n\) increases linearly. As soon as the current \(i_s\) is reached or the on-time of \(S_{12}\), \(T_{on}\), defined by the controller (cf., Section IV) has passed \(S_{12}\) is turned OFF

\[
i_n(t_1) = \frac{i_s}{v_n}, \quad v_{S12}(t_1) = 0.
\]

Interval 2 \([t_1, \ldots, t_2]\): During this interval, a switching transition takes place in which the nonlinear MOSFET output capacitance \(C_{oss2}\) is charged and \(C_{oss1}\) is discharged. The voltages applied to the switches \(v_{S11}\) and \(v_{S12}\) follow according to the characteristic of the nonlinear capacitances. The switch voltages and currents during this interval can only be evaluated using numerical and iterative methods. Since \(i_n\) is large, however, the switching transition is very fast, and interval 2 can usually be neglected

\[
i_n(t_2) = i_{SS} \approx i_s, \quad v_{S12}(t_2) = v_{out}.
\]

Interval 3 \([t_2, \ldots, t_3]\): When \(C_{oss2}\) is fully charged, the body diode of \(S_{11}\) starts to conduct the inductor current \(i_n\) and interval 3 starts. After an interlocking delay time (cf., Section IV), \(S_{11}\) is turned ON at zero voltage. During interval 3, the voltage applied to the inductor is negative and \(i_n\) decreases

\[
i_n(t_3) = 0, \quad v_{S12}(t_3) = v_{out}.
\]

Interval 4 \([t_3, \ldots, t_4]\): Once \(i_n\) reaches zero, \(S_{11}\) is turned OFF and interval 4 begins. \(L, C_{oss1}\), and \(C_{oss2}\) form a resonant circuit which starts to oscillate. The behavior of the oscillation depends on the input to output voltage ratio \(v_n/v_{out}\). For \(v_n/v_{out} < 1/2\), \(v_{S11}\) rises to \(v_{out}\) and \(v_{S12}\) declines to zero and ZVS is achieved [19].

If \(v_n/v_{out}\) exceeds 1/2, the instantaneous switch voltage \(v_{S12}(t)\) does not reach 0 and ZVS cannot be achieved. Instead, the turn-on instant has to coincide with the instant when \(v_{S12}\) is minimal in order to minimize the switching losses [cf., Figs. 3(b) and 4(a)]. This is pointed out in the V–Zi plot in Fig. 3(d).

The V–Zi plot shows a state graph of \(v_{S12}\) and \(i_n\), which are the state variables of the system. If the system trajectory reaches the ordinate after a switching cycle, ZVS can be achieved. Thus, the V–Zi plot clearly shows whether or not ZVS can be achieved [cf., Fig. 3(d)]

\[
i_n(t_4) = 0
\]

\[
v_{S12}(t_4) = \begin{cases} 0, & \text{if } v_n/v_{out} < 1/2 \\ 2v_n - v_{out}, & \text{else,} \end{cases}
\]

To overcome the drawback of losing ZVS during the mains period, a modified modulation technique can be applied. Considering the current waveform shown in Fig. 3(c), it is obvious that intervals 1–3 are similar to the waveforms depicted in Fig. 3(b). However, \(S_{11}\) is kept turned ON at the zero crossing of \(i_n\) and the current keeps decreasing linearly [cf., interval 4 in Fig. 3(c)]

\[
i_n(t_4) = i_R, \quad v_{S12}(t_4) = v_{out}.
\]

Equation (6) assumes that the output capacitance is linear. An analytical expression that includes the nonlinearity of the capacitance is not feasible.
Interval 5 $[t_4, \ldots, t_5]$: As soon as a defined current i_R is reached or a given reverse conduction time $T_{R\text{V}}$ has passed (cf., Section IV) S_{11} is turned OFF and an oscillation starts (interval 5). Different to the previous situation shown in Fig. 3(b), the energy stored in the inductor now is large enough to completely charge C_{oss1} and discharge C_{oss2}. Thus, v_{S12} reaches 0 during interval 5. The negative current i_n enlarges the elliptic oscillation trajectory (cf., v_2 in the V–Z diagram of Fig. 3(e)) so that v_{S12} is able to decrease to 0. Consequently, ZVS can be achieved over the complete mains period by controlling the on-time of S_{11} and thus controlling the reverse current i_R in the inductor L

$$i_n(t_5) = i_{R\text{V}}, \quad v_{S12}(t_5) = 0.$$

Interval 6 $[t_5 \ldots t_6]$: During interval 6, i_n commutates to the body diode of S_{12} and increases linearly. During this interval, S_{12} can be turned ON at zero voltage

$$i_n(t_6) = 0, \quad v_{S12}(t_6) = 0.$$

Fig. 4 presents measurement results which illustrate the difference between valley switching and the proposed TCM. As can be clearly seen, applying an additional reverse current i_R allows for ZVS, which is particularly important for high switching frequencies.

A. Converter design

A PFC rectifier shapes the input current i_n to be proportional to the input voltage v_n. The average current i_{av} over a switching period (cf., Fig. 3(c)) has thus to be controlled by adjusting the on-time T_{on} and the reverse conduction time $T_{R\text{V}}$ during each switching cycle. Knowing these timing parameters allows for the determination of the switching frequency, the duty cycle, all converter currents, and the losses of the converter.

From Fig. 3(c) it can be concluded that there is an infinite set of combinations $\{T_{on}, T_{R\text{V}}\}$ which lead to a required average current i_{av} since an increase of T_{on} can be compensated by a respective increase of $T_{R\text{V}}$ so that the average value of the input current i_n over the switching period keeps constant. The infinite set of applicable parameters $\{T_{on}, T_{R\text{V}}\}$ can be used to adjust the switching period, T_P. This can be beneficially used to interleave several boost cells (cf., Section IV). Large values of i_S and i_R, however, result in an increased rms value of i_n and in a higher flux density swing in the boost inductor which increases copper and core losses, respectively. As a consequence, it is beneficial to keep the switching period as short as possible.

The average current i_{av} can be calculated numerically by integrating the inductor current [cf., Fig. 3(c)] over a switching period for a given input voltage $v_n(t)$ ($v_n(t) \approx$ constant is assumed during a single switching period)

$$i_{av} = \frac{1}{T_P} \sum_{j=1}^{6} \int_{t_j}^{t_{j+1}} i_n(t) \, dt.$$

(10)

Due to the nonlinearity of the MOSFETs’ output capacitances intervals 2 and 5 can only be described by solving a nonlinear differential equation of the charge $q(t)$ in the capacitances

$$L \cdot \frac{d^2 q(t)}{dt^2} + v_C(q(t)) = v_n$$

(11)

where $v_C(q(t))$ represents the voltage applied to the parallel connection of the output capacitances C_{oss1} and C_{oss2}.

This results in a considerable calculation effort as (11) can only be solved iteratively [20]. In order to simplify the calculation, an adequate model of the capacitance during the switching transition is detailed in the next section.

III. CLOSED-FORM ANALYTICAL CONVERTER MODEL

In order to obtain a sinusoidal input current of the TCM PFC rectifier i_n, it is crucial to determine the average current over a switching period (cf., (10)). However, a switching period consists of switching transitions which depend on the nonlinear output capacitances of the applied MOSFETs. The respective current waveforms can only be solved numerically with iterative methods. This section presents a simple and accurate model that allows for closed-form solutions of the inductor current within a switching period in a TCM PFC rectifier. These closed-form expressions enable the calculation of the timing parameters needed for the control and the converter design, i.e., the loss evaluation of each component.

The derivation of the timing parameters has to be carried out for two cases: the first case considers $v_n > V_{\text{out}}/2$ where an additional time $T_{R\text{V}}$ is required to achieve ZVS. In the second case, $v_n \leq V_{\text{out}}/2$, $T_{R\text{V}}$ is not required to achieve ZVS but the oscillation needs to be modeled accurately in order to determine the timing values needed for the design and the control. For the
et al. parallel connected nonlinear output capacitances of the switches for $v_{in} > V_{out}/2$ which assumes a triangular-shaped current waveform. The peak current i_{q} is assumed to occur when the output voltage V_{out} is charged. Fig. 5(a) shows the typical waveforms for an input voltage v_{in}.

Considering a positive input voltage v_{in} and starting at interval 4 in Fig. 3(c), the equivalent circuit shown in Fig. 5(a) is obtained. There, the inductor current i_n is decreasing, C_{oss1} is discharged, and C_{oss2} is charged. Fig. 5(a) shows the typical characteristic of the MOSFET’s output capacitance.

As soon as S_{11} is turned OFF, C_{oss1} and C_{oss2} are connected in parallel and the equivalent circuit illustrated in Fig. 5(b) is obtained. In order to discharge C_{oss2}, the charge Q_C

$$Q_C = q_C(V_{out}) = \int_0^{V_{out}} C_{oss2}(v_{C}) dv_{C}$$

(12)

has to be removed and, assuming identical switches, the same charge Q_C is needed to charge C_{oss1} to V_{out}. Consequently, as soon as the time integral of the current i_n during interval 5 exceeds $2Q_C$, ZVS can be achieved as v_{C} declines to zero.

The most simple capacitance model reduces the voltage v_{C} applied to the parallel connected capacitances $C_{oss1} || C_{oss2}$ to

$$v_C(q_C) = \begin{cases} V_{out}, & \text{if } q_C > Q_C \\ 0, & \text{else} \end{cases}$$

(13)

where as q_C is the charge in the capacitance $C_{oss1} || C_{oss2}$. Fig. 5(c) illustrates the waveforms obtained with the proposed model and it can be seen that a triangular-shaped current i_n results and the derivation of an analytical expression becomes feasible. The proposed model (13) is based on the condition that

$$\int_{\text{Interval 5}} |i_n(t)| dt \geq 2 \cdot Q_C$$

(14)

which can be assured by controlling the reverse current i_R.

A simulation is used to validate the model and to compare it to other conventionally used models for nonlinear output capacitances, i.e., the (linear) energy-equivalent capacitance C_{ee} and the (linear) charge-equivalent capacitance C_{qe} [24].

$$C_{ee}(V_{out}) = \frac{2}{V_{out}^2} \int_0^{V_{out}} C_{oss}(v_{DS}) v_{DS} dv_{DS}$$

(15)

$$C_{qe}(V_{out}) = \frac{1}{V_{out}} \int_0^{V_{out}} C_{oss}(v_{DS}) dv_{DS}.$$

(16)

Fig. 6 presents the simulation results. For each model, the required negative current i_R is calculated in order to achieve ZVS and compared to the nonlinear capacitance model specified in the datasheet of the applied MOSFET in Fig. 6(a). The energy-equivalent model yields a poor approximation of the inductor current, the model even fails to predict whether ZVS can be achieved. The charge-equivalent model achieves a better approximation [cf., Fig. 6(b)]; however, resonant states need to be considered during intervals 2 and 5. The proposed model, finally, achieves a very good approximation of the inductor current without the need for resonant states [cf., Fig. 6(c)], which renders this model most suitable with respect to an analytical investigation of the TCM PFC rectifier.

The required negative current i_R is independent of the output power but only depends on V_{out}, v_n, and the selected switch which defines Q_C. Considering Fig. 5(c), i_R can be calculated with

$$Q_C = \frac{-\dot{i}_R T}{2} \Rightarrow \dot{i}_R = -\frac{2Q_C}{L} v_n$$

(17)

where as $L \frac{di}{dt} = L (-\dot{i}_R)/T_y = v_n$ has been substituted. With (17), i_R can be calculated with the same approach which yields

$$i_R = \begin{cases} -\frac{2Q_C}{L} (2v_n - V_{out}), & \text{if } v_n > V_{out}/2 \\ 0, & \text{else} \end{cases}$$

(18)

i.e., no additional reverse current i_R is required for $v_n < V_{out}/2$.

Applying the presented model of the nonlinear capacitances to interval 5 allows for the analytical description of each interval and a closed-form converter model is obtained. As already mentioned, interval 2 is also determined by a switching transition including nonlinear MOSFET capacitances but due to the large inductor current i_n, the switching transition is very fast and interval 2 can be neglected.
Considering Fig. 7(a), the average current in the inductor over a switching period is

\[i_{av} = \frac{1}{T_P} \left(\frac{i_S \cdot T_{on}}{2} + \frac{i_S \cdot T_{off}}{2} + \frac{i_R \cdot T_R}{2} - 2 \cdot Q_C \right). \]

(19)

The relation between inductor current and inductor voltage applied to each interval results in

\[i_S = \frac{v_n}{L} \cdot T_{on}, \quad T_{off} = \frac{L \cdot i_S}{V_{out} - v_n}, \quad T_R = \frac{L \cdot (-i_R)}{V_{out} - v_n}. \]

(20)

The switching period is defined by

\[T_P = T_{on} + T_{off} + T_R + T_{s2} \]

(21)

with

\[T_{s2} = L \cdot \frac{(-i_R - i_R)}{v_n} + L \cdot \frac{-i_R}{v_n}. \]

(22)

Substitution of (20)–(22) into (19) and solving for a desired average current \(i_{av} \) yields the on-time \(T_{on} \) [cf., (23)] and consequently all timing and current values. Fig. 7(c) presents the timing values and the switching frequency over a half mains period for the parameters listed in Fig. 7(b). Fig. 7(d) shows the respective current values. As can be seen, the required \(i_R \) is very high compared to \(i_S \) which is particularly pronounced for low power converters as the required input current is inherently small. For high power converters, this ratio decreases so that the additional rms current caused by the modulation has almost no impact [25] (23), as shown at the bottom of the page.

The determination of the required negative current \(i_R \) can also be easily implemented in a DSP which is needed for the rectifier’s control presented in the following section.

\[T_{on} = \frac{L \cdot i_{av}}{v_n} + \sqrt{\frac{L}{V_{out} \cdot v_{n}^2} \cdot \left(L i_{av}^2 V_{out} + L i_R^2 v_n + 4 v_n V_{out} Q_C - 4 v_n^2 Q_C + 2 i_{av} V_{out} \sqrt{L v_n Q_C} \right)} \]

(23)

IV. CONTROL OF THE TCM PFC RECTIFIER

Based on the switching cycle discussed in Section II and the simplified model of the switching transition detailed in Section III, the converter control is described in this section. Contrary to control presented in [20], the proposed control does not need any lookup tables or interpolations which simplifies the implementation considerably. Fig. 8(a) depicts a single-cell TCM rectifier including a simplified control structure. The input quantities required for the control are the input voltage, the output voltage, the input current, and the sign of the inductor current which is determined using a shunt resistor and a high-speed comparator in each inductor path [20]. For high-power converters (up to several kilowatts), a current transformer with saturable core may be employed to reduce the conduction losses [25].

The DSP calculates the required on-time \(T_{on} \) and the reverse conduction time \(T_R \) according to the current values of \(v_n \), \(V_{out} \), and \(i_n \). With \(T_{on} \), \(T_R \), and the sign of the inductor current being known, a state machine residing in a field-programmable gate array (FPGA) generates the switching pattern illustrated in Fig. 8(b). The transitions between the five states are determined by either the specified timing value (States I, II, IV, and V) or the zero-crossing detection (State III → State IV). A constant interlocking delay time \(T_{il} \) is assumed for States II and V (\(T_{il} = 400 \text{ ns} \) for the realized prototype).
Contrary to the analysis of Section II, State I starts before the zero crossing of the i_n [cf., Fig. 8(b)] as the triggering of State I using the zero-current signal would be slightly time delayed and S_{12} would be turned ON without ZVS. Therefore, State I follows directly State V, while i_n is still negative and the parameter T_{on} has to be calculated including this additional time before the zero crossing of i_n which has been implemented in a feed-forward control K_{ff} of the current controller. The time delay of the zero-crossing signal triggering State IV is not critical as there is no switching transition involved which could lose ZVS.

A drawback of the presented topology in Fig. 8(a) is the large ripple of the inductor current i_n which results in a reduced power factor PF, a large total harmonic distortion (THD) value, and hence a large DM EMI filter size. In order to obtain a smooth input current, a multicell configuration can be applied [cf., Fig. 2(b)] where the superposition of several inductor currents results in a smooth input current i_n.

Fig. 9 depicts the simulation results of a 200 W three-cell TCM PFC rectifier system. The magnified part shows the input current i_n and the three inductor currents $i_{L1},...i_{L3}$ and illustrates the input current ripple reduction achieved by means of interleaving the inductor currents. Applying a first-order low-pass filter with a cutoff frequency of $f_c = 16$ kHz, the input current i_{n}^{\ast} can be achieved which has a THD value of 6.9% and a power factor of $PF = 99.6\%$ ($v_{in} = 230$ V, $V_{out} = 400$ V, $P_{out} = 200$ W).

Fig. 10 presents the basic idea of the implemented interleaving control for two boost cells with the corresponding inductor currents i_{L1} and i_{L2}. There, the boost cell conducting i_{L1} is considered as master cell to which several other cells are synchronized. The only required input signal is the zero-crossing signal of each inductor current. For each boost cell, the end of a period (EoP) is characterized with a zero-crossing signal which changes from negative to positive. A counter is reset on every EoP signal no matter from which cell it is generated. The resulting counter values y_1 and y_2 are thus proportional to $T_{P} - \Delta T$ and to ΔT, respectively, and the desired delay between the two phases can be adjusted by selecting the ratio between y_1 and y_2. For example, a delay of $T_{P}/3$ requires y_1 to be twice the value of y_2. Any deviation from this ratio is used as control parameter ΔT_{on}, and added to the slave cell as an extension or a reduction of its on-time. The input current can be kept constant by compensating ΔT_{on} with a corresponding ΔT_{ff} as explained in Section II. Other interleaving control techniques can be found in [26]–[28].

The interleaving control and the state machines for each boost cell are implemented in an FPGA. Fig. 11 presents the implemented control of the multicell TCM PFC rectifier. The sign of the input voltage $\text{sgn}(v_{in})$ defines which switch of a bridge-leg is considered as boost switch and which is the free-wheeling switch. For example, for positive v_{in}, S_{n1} is the free-wheeling switch and S_{n2} is the boost switch where x corresponds to the bridge-legs $x=1,\ldots,3$.

The bridge-leg composed of S_{N1} and S_{N2} switches synchronously to the mains frequency [cf., Fig. 9(c)]. For positive input voltages v_{in}, S_{N1} is OFF, while S_{N2} is turned ON and

2 This is valid for positive input voltages v_{in}. For negative input voltages, the sign changes accordingly.
Δv = η = 400 V, and 325 V) due to the time delay im-
and Fig. 13(b) illustrates the
is determined in order to consider the difference
D
V
325 V,
94.6
|≥
400 V,
1
P
P
L
= =
v
P
200 W (measured with a Precision Power Analyzer
and
= T
= T
at full load
= 400 V, and
400 V, and
declines to 0 V
v
K
and input current
230 V,
22 V for the realized prototype), the slow switching
= = =
= =
= =
= =

Laboratory Set-up
V.

In order to validate the proposed model and the simulation
results, a 200 W TCM PFC rectifier has been designed and real-
ized. The design of the prototype aims for a ultraflat shape of
the converter outline, and therefore, all components are selected
with respect to a low thickness.

Table II lists the circuit parameters of the prototype fea-
turing an overall thickness of 5 mm and Fig. 12(a) and (b)
shows the measured inductor currents and the switch volt-
ages (V
s
, V
n
) for the prototype being operated as dc–dc converter at
two different operating points. Obviously, as the operating points
are different, the measured core losses differ as well (Table II).
Furthermore, the turn-off delay of the switch.

Table II. Circuit Parameters of the Prototype FDC–DC Converter

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductor L</td>
<td>250 μH</td>
</tr>
<tr>
<td>Transformer</td>
<td>1500:1</td>
</tr>
<tr>
<td>Output Capacitor</td>
<td>10 μF</td>
</tr>
<tr>
<td>FPGA and TPS82320A</td>
<td>200 V</td>
</tr>
</tbody>
</table>

Fig. 12 further depicts the measured efficiencies for both dc–
de operating points, and Table III lists the calculated core
and input voltage
v
in
and input current
i
in
of WT3000 [35]. Fig. 13(a) presents the measurement result of in-
put voltage
v
in
and input current
i
in
of PFC rectifier operation, the prototype achieves an effi-
ciency of 94.6% at full load output voltage
v
out
= 250 V, whereas the switching frequency is
higher at 230 V, and the current density in the core is
higher at 230 V, and the flux density swing in the core re-
sults in a higher core loss.

The figure shows that each bridge-leg is hard-switched and consid-
ertible high-frequency (HF) bridge-legs as proposed in [21].

The control structure resides in the DSP and is composed of a
superimposed output voltage controller, a current controller
controlled by a superimposed output voltage controller
and ZVS is achieved. Furthermore, the interleaving control of
bridge-legs is properly achieved with the presented in-
terleaving control method. (a) Interleaving of the inductor currents is properly achieved with the presented in-

TABLE II. CIRCUIT PARAMETERS OF THE 200 W TCM PFC RECTIFIER

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductor L</td>
<td>250 μH</td>
</tr>
<tr>
<td>Transformer</td>
<td>1500:1</td>
</tr>
<tr>
<td>Output Capacitor</td>
<td>10 μF</td>
</tr>
<tr>
<td>FPGA and TPS82320A</td>
<td>200 V</td>
</tr>
</tbody>
</table>

Fig. 13. (a) Measurement results of converter system operating in dc–dc mode. (b) Interleaving of the inductor currents is properly achieved with the presented interleaving control method.
measured efficiency η and power factor PF as a function of the load. In order to analyze the benefit of the TCM modulation over the conventional valley switching, the switching losses of valley switching have been calculated which results in $P_L = 2$ W per switch. All six HF switches would thus cause 12 W additional losses and the overall converter losses would double. Therefore, the TCM modulation achieves a considerably benefit over conventional employed modulation methods.

The presented topology is also applicable to higher power levels, e.g., [36] reports a 3.3 kW TCM PFC rectifier which achieves an efficiency of more than 99% over the entire load range at a power density of 1.1 kW/dm3.

All components of the realized 200 W prototype are surface mounted in order to simplify the manufacturing, tests, and measurements which results in a converter height of 5 mm. A converter thickness of 1 mm would be feasible with all components being integrated into the PCB. It becomes apparent in [37] that the main challenge is the realization of PCB-integrated magnetic components, and thus, a comprehensive design procedure for PCB-integrated magnetic components is presented there. Applying this design procedure to the boost inductor of the TCM PFC rectifier yields the $\alpha-\eta$-Pareto front presented in Fig. 14(a) which depicts several inductor designs. The Pareto front, indicated in Fig. 14(a), shows the tradeoff between inductor efficiency η and its area-related power density α. The optimal designs with respect to η or α are indicated in the figure and an illustration of the PCB-integrated inductor with magnetic core and with the windings realized as tracks and vias is shown in Fig. 14(b); there, the dimensions for both optima are given.

VI. CONCLUSION

This paper presented the analysis and the modeling of a single-phase multicell TCM PFC rectifier and discussed the implications on the design of an extremely thin converter with a targeted thickness of 1 mm. In order to achieve this low height, all components have to be integrated into the PCB. Due to the resulting stringent converter requirements, a modified multicell totem-pole PFC rectifier is considered to be most appropriate for the specified ultraflat PFC rectifier, since this topology enables low conduction losses, low switching losses, and reduced EMI filter requirements. It is shown that full-range ZVS can be achieved with a specific modulation technique entitled TCM. However, the nonlinear output capacitances of the MOSFETs need to be considered, since they have a strong impact on the inductor current waveform and on the timing parameters. The proposed simplified capacitance model facilitated the derivation of closed-form expressions which allows for a straightforward design of each component and an accurate loss estimation. Furthermore, it is implemented in a DSP to calculate the timing values which would not be possible with a more complex model due to the required calculation effort. This paper further detailed the implemented control structure including interleaving control, input current control, and output voltage control. All theoretical considerations were validated using measurement results on a prototype of a 200 W three-cell TCM PFC rectifier. The realized PFC rectifier achieved an efficiency of $\eta = 94.6\%$ and a power factor of $PF = 99.3\%$ at a footprint size of 221 mm \times 157 mm and a thickness of $h = 5$ mm.

REFERENCES

Christoph Marxgut (S‘09) studied electrical engineering at the University of Technology Vienna, Austria, focusing on control systems and measurement technology and delved into energy technology and power systems at the Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland. He received the Dipl.-Ing. (M.Sc.) degree (with Hons.) from ETH Zürich, in October 2008, where since November 2008, he has been working toward the Ph.D. degree in the Power Electronic Systems Laboratory.

During his M.Sc. thesis at ETH Zürich, he was involved in research on modulator design for pulsed power systems.

Florian Krismer (S’05–M’12) received the M.Sc. degree (with Hons.) from the University of Technology Vienna, Vienna, Austria, in 2004, and the Ph.D. degree from the Power Electronic Systems Laboratory (PES), Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland, in 2011. He is currently a Postdoctoral Fellow with PES, ETH Zürich. His research interests include the analysis, design, and optimization of high-current and high-frequency power converters.

Dominik Boris (S’06) received the Ph.D. degree from the Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland, in 2008. He is currently a Postdoctoral Fellow in the Power Electronic Systems Laboratory, ETH Zürich.

Johann W. Kolar (F’10) received the M.Sc. and Ph.D. degrees (summa cum laude/promotio sub auspiciis praesidentis rei publicae) from the University of Technology Vienna, Austria, in 1984. He has been working as an independent international consultant in close collaboration with the University of Technology Vienna, in the fields of power electronics, industrial electronics, and high-performance drives. He has proposed numerous novel converter topologies and modulation/control concepts, e.g., the VIENNA rectifier, the Swiss rectifier, and the three-phase ac–dc sparse matrix converter. He has published more than 450 scientific papers in international journals and conference proceedings and has filed more than 85 patents. He became a Professor and the Head of the Power Electronic Systems Laboratory, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland, on February 1, 2001. He initiated and/or is the founder/cofounder of four spin-off companies targeting ultrahigh speed drives, multidomain/level simulation, ultracom pact/efficient converter systems, and pulsed power/electronic energy processing. His current research is focused on ac–ac and ac–dc converter topologies with low effects on the mains, e.g., for data centers, more-electric-aircraft and distributed renewable energy systems, and on solid-state transformers for smart microgrid systems. His main research interests include realization of ultracompact and ultraefficient converter modules employing latest power semiconductor technology (SiC and GaN), micropower electronics and/or power supplies on chip, multidomain/mode simulation and multiobjective optimization, physical model-based lifetime prediction, pulsed power, and ultrahigh speed and bearingless motors.

Dr. Kolar was appointed an IEEE Distinguished Lecturer by the IEEE Power Electronics Society in 2011. He received an IEEE Transactions Prize Paper Award of the IEEE Industrial Electronics Society in 2005, of the IEEE Industry Applications Society (IAS) in 2009 and 2010, the IEEE/ASME in 2010, and of the IEEE Power Electronics Society (IPEC) during 2009–2011. He also received the Best Paper Award at the International Conference on Power Electronics 2007, the IAS 2008, the 35th Annual Conference of the IEEE Industrial Electronics Society 2009, the IPEC 2010 (for two papers), the Energy Conversion Congress and Exposition (ECCE) Asia 2011, and the ECCE USA 2011. He received the ETH Zürich Golden Owl Award 2011 for Excellence in Teaching and an Erskine Fellowship from the University of Canterbury, New Zealand, in 2003. In 2006, the European Power Supplies Manufacturers Association awarded the Power Electronics Systems Laboratory, ETH Zürich, as the leading academic research institution in power electronics in Europe. He is a member of the Institute of Electrical Engineers of Japan (IEEE) and of the International Steering Committees and Technical Program Committees of numerous international conferences in the field (e.g., the Director of the Power Quality Branch of the International Conference on Power Conversion and Intelligent Motion). He is the founding Chairman of the IEE PELS Austria and Switzerland Chapter and the Chairman of the Education Chapter of the European Power Electronics Association. From 1997 to 2000, he was as an Associate Editor of the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. Since 2001, he has been an Associate Editor of the IEEE TRANSACTIONS ON POWER ELECTRONICS. Since 2002, he has also been an Associate Editor of the Journal of Power Electronics of the Korean Institute of Power Electronics and a member of the Editorial Advisory Board of the IEEE TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING.